Citation: Xiao-Yan CHENG, Meng XU, Jian-Ming OUYANG. Synthesis, Characterization, Adsorption Properties of Calcium Oxalate Monohydrate Crystals with Different Aspect Ratios and Their Toxicity to Renal Epithelial Cell[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1261-1271. doi: 10.11862/CJIC.2022.135 shu

Synthesis, Characterization, Adsorption Properties of Calcium Oxalate Monohydrate Crystals with Different Aspect Ratios and Their Toxicity to Renal Epithelial Cell

  • Corresponding author: Jian-Ming OUYANG, toyjm@jnu.edu.cn
  • Received Date: 7 December 2021
    Revised Date: 20 April 2022

Figures(8)

  • Four kinds of calcium oxalate monohydrate (COM) crystals (COM-1:2, COM-1:3, COM-1:4, and COM-1:5) with the aspect ratio of 1:2, 1:3, 1:4, and 1:5, respectively, were synthesized. Their physicochemical properties were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope (SEM), ζ potentiometer, and specific surface tester. SEM images show that the widths of the crystals were similar, but the lengths of the crystals were (3±0.3) μm, (5.2±0.3) μm, (7.0±0.7) μm, and (8.8±1.2) μm, respectively. With the increase of reaction temperature, the length of the crystal increased. The faster the stirring speed, the smaller the crystal size. As the concentration of the additive gelatin decreased, the (101) faces of COM crystals were elongated. Cell viability, cell total mortality, and reactive oxygen species (ROS) tests showed that the toxicity of COM with different length-width ratios to the human proximal tubular epithelial cells (HK-2) was COM-1:2 > COM-1:3 > COM-1:4 > COM-1:5 > control group. SEM examination showed that all four COM crystals could adhere to the cell surface. The reasons for this difference are positively related to the following points: a large proportion of (101) crystal planes, large specific surface area, and small cell-crystal shear stress.
  • 加载中
    1. [1]

      Khan S R, Pearle M S, Robertson W G, Gambaro G, Canales B K, Doizi S, Traxer O, Tiselius H G. Kidney Stones[J]. Nat. Rev. Dis. Primers, 2016,2(1)16008. doi: 10.1038/nrdp.2016.8

    2. [2]

      Khan A H, Imran S, Talati J, Jafri L. Fourier Transform Infrared Spectroscopy for Analysis of Kidney Stones[J]. Invest. Clin. Urol., 2018,59(1):32-37. doi: 10.4111/icu.2018.59.1.32

    3. [3]

      Sun X Y, Zhang H, Chen J Y, Zeng G H, Ouyang J M. Porphyra Yezoensis Polysaccharide and Potassium Citrate Synergistically Inhibit Calcium Oxalate Crystallization Induced by Renal Epithelial Cells and Cytotoxicity of the Formed Crystals[J]. Sci. Eng. C, 2021,119111448. doi: 10.1016/j.msec.2020.111448

    4. [4]

      Liu H R, Ye T, Yang X Q, Liu J H, Jiang K H, Lu H Y, Xia D, Peng E, Chen Z Q, Sun F, Tang K, Ye Z Q. H19 Promote Calcium Oxalate Nephrocalcinosis-Induced Renal Tubular Epithelial Cell Injury via a ceRNA Pathway[J]. EBioMedicine, 2019,50:366-378. doi: 10.1016/j.ebiom.2019.10.059

    5. [5]

      WEN X L, SUN X Y, OUYANG J M. Adsorption Properties of Positively Charged Proteins on Nano/Micron Calcium Oxalate Crystals and Their Comparison with Negatively Charged Proteins[J]. Chinese J. Inorg. Chem., 2017,33(1):49-56. doi: 10.11862/CJIC.2017.013

    6. [6]

      Ouyang J M, Xia Z Y, Zhang G N, Chen H Q. Nanocrystallites in Urine and Their Relationship with the Formation of Kidney Stones[J]. Rev. Inorg. Chem., 2012,32(2/3/4):101-110.

    7. [7]

      Lou Y T, He W, Song Z Y. Aggregation of Nanochemical Microcrystals in Urine Promotes the Formation of Urinary Calculi[J]. J. Chem., 20208516903.

    8. [8]

      Jo M, Oh Y, Kim H J, Kim H L, Yang S H. Diffusion-Controlled Crystallization of Calcium Carbonate in a Hydrogel[J]. Cryst. Growth Des., 2020,20(2):560-567. doi: 10.1021/acs.cgd.9b00614

    9. [9]

      Chen X S, Jiang R L, Zhou Z H, Wang X W. Synthesis and Catalytic Properties of ZSM-5 Crystals with Different Morphologies in Gelatin Hydrogels[J]. J. Disper. Sci. Technol., 2019,42(4):561-568.

    10. [10]

      An D C, Wang J J, Zhang J, Zhai X, Kang Z P, Fan W H, Yan J, Liu Y Q, Lu L, Jia C L, Wuttig M, Cojocaru-Mirédin O, Chen S P, Wang W X, Snyder G J, Yu Y. Retarding Ostwald Ripening through Gibbs Adsorption and Interfacial Complexions Leads to High-Performance SnTe Thermoelectrics[J]. Energy Environ. Sci., 2021,14(10):5469-5479. doi: 10.1039/D1EE01977E

    11. [11]

      Pitto-Barry A, Barry N P E. Effect of Temperature on the Nucleation and Growth of Precious Metal Nanocrystals[J]. Angew. Chem. Int. Ed., 2019,58(51):18482-18486. doi: 10.1002/anie.201912219

    12. [12]

      Zhang X, Wang Y, Liu D R, Ji Z S, Xu H Y, Hu M L, Cui P X. Effect of Stirring Rate on Grain Morphology of Mg-Al Alloy Semi-Solid Structure by Phase Field Lattice Boltzmann Simulation[J]. J. Cryst. Growth., 2020,543125704. doi: 10.1016/j.jcrysgro.2020.125704

    13. [13]

      CAO J, CAI Y R, MA Y S, YAO J M. Effects of Nano-Calcium Phosphate on Biological Behavior of MG63 Cells[J]. Chinese Journal of Tissue Engineering Research, 2012,16(29):5341-5344.  

    14. [14]

      Tamura K, Takashi N, Kumazawa R, Watari F, Totsuka Y. Effects of Particle Size on Cell Function and Morphology in Titanium and Nickel[J]. Mater. Trans., 2002,43(12):3052-3057. doi: 10.2320/matertrans.43.3052

    15. [15]

      Sheng X X, Ward M D, Wesson J A. Crystal Surface Adhesion Explains the Pathological Activity of Calcium Oxalate Hydrates in Kidney Stone Formation[J]. J. Am. Soc. Nephrol., 2005,16(7):1904-1908. doi: 10.1681/ASN.2005040400

    16. [16]

      Farmanesh S, Ramamoorthy S, Chung J, Asplin J R, Karande P, Rimer J D. Specificity of Growth Inhibitors and Their Cooperative Effects in Calcium Oxalate Monohydrate Crystallization[J]. J. Am. Chem. Soc., 2014,136(1):367-376. doi: 10.1021/ja410623q

    17. [17]

      King M, Mcclure W F, Andrews L C. Powder Diffraction File Alpha-betical Index, Inorganic Phases/Organic Phases. International Center for Diffraction Data, U.S.A., 1992.

    18. [18]

      Wang L, He X M, Sun W T, Wang J L, Li Y D, Fan S S. Crystal Orientation Tuning of LiFePO4 Nanoplates for High Rate Lithium Battery Cathode Materials[J]. Nano Lett., 2012,12(11):5632-5636. doi: 10.1021/nl3027839

    19. [19]

      Jiang K H, Hu J X, Luo G H, Song D L, Zhang P, Zhu J G, Sun F. MiR-155-5p Promotes Oxalate- and Calcium-Induced Kidney Oxidative Stress Injury by Suppressing MGP Expression[J]. Oxid. Med. Cell. Longevity, 20205863617.

    20. [20]

      Zhang L M, Zhen R R, Gu C, Zhang T L, Li Y, Jin M, Hu B, An H M. Chinese Medicine Di-Huang-Yi-Zhi Protects PC12 Cells from H2O2-Induced Apoptosis by Regulating ROS-ASK1-JNK/p38 MAPK Signaling[J]. BMC Complement. Med. Ther., 2020,20(1)54. doi: 10.1186/s12906-020-2834-8

    21. [21]

      Sun X Y, Yu K, Ouyang J M. Time-Dependent Subcellular Structure Injuries Induced by Nano -/Micron-Sized Calcium Oxalate Monohydrate and Dihydrate Crystals[J]. Mater. Sci. Eng. C, 2017,79:445-456. doi: 10.1016/j.msec.2017.05.081

    22. [22]

      Sun X Y, Gan Q Z, Ouyang J M. Size-Dependent Cellular Uptake Mechanism and Cytotoxicity toward Calcium Oxalate on Vero Cells[J]. Sci. Rep., 2017,741949. doi: 10.1038/srep41949

    23. [23]

      Narula S, Tandon S, Singh S K, Tandon C. Kidney Stone Matrix Proteins Ameliorate Calcium Oxalate Monohydrate Induced Apoptotic Injury to Renal Epithelial Cells[J]. Life. Sci., 2016,164:23-30. doi: 10.1016/j.lfs.2016.08.026

    24. [24]

      Sheng X X, Jung T S, Wesson J A, Ward M D. Adhesion at Calcium Oxalate Crystal Surfaces and the Effect of Urinary Constituents[J]. Proc. Natl. Acad. Sci. U.S.A., 2005,102(2):267-272. doi: 10.1073/pnas.0406835101

    25. [25]

      Nel A, Xia T, Madle L, Li N. Toxic Potential of Materials at the Nanolevel[J]. Science, 2006,311(5761):622-627. doi: 10.1126/science.1114397

    26. [26]

      Patil V R S, Campbell C J, Yun Y H, Slack S M, Goetz D J. Particle Diameter Influences Adhesion under Flow[J]. Biophys. J., 2001,80(4):1733-1743. doi: 10.1016/S0006-3495(01)76144-9

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(3)
  • Abstract views(659)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return