Citation: Ming-Ming HAN, Ji-Wu HUANG, Xian-Wen WU, Shu-Quan LIANG, Jiang ZHOU. Electrolyte Modulation Strategies for Rechargeable Zn Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1451-1469. doi: 10.11862/CJIC.2022.130 shu

Electrolyte Modulation Strategies for Rechargeable Zn Batteries

  • Corresponding author: Jiang ZHOU, zhou_jiang@csu.edu.cn
  • Received Date: 5 January 2022
    Revised Date: 5 April 2022

Figures(10)

  • Large‐scale electrical energy storage (EES) technology with high safety, low cost, and high stability determines the future energy structure adjustment and smart grid construction. Rechargeable Zn batteries (RZBs) would be an ideal candidate for EES devices because of their intrinsic environment‐friendly and cost‐effective properties. Although substantial progress has been achieved in RZBs in the past several years, the state‐of‐art RZBs are plagued by severe side‐reactions like cathode materials dissolution, dendrites growth, Zn corrosion, and hydrogen evolution, which are associated with the active free water and hydrated Zn(OH)62+ ion in common aqueous solution. In this review, the electrolyte strategies including concentration, additives, and solvation structure modulation for improving Zn cycling performance are discussed in detail. This paper combines reviews and perspectives on electrolyte strategies, which would shed light on the development of high‐performance RZBs.
  • 加载中
    1. [1]

      Han M M, Qin L P, Liu Z X, Zhang L X, Li X K, Lu B A, Huang J W, Liang S Q, Zhou J. Reaction Mechanisms and Optimization Strategies of Manganese‐Based Materials for Aqueous Zinc Batteries[J]. Mater. Today Energy, 2021,20100626. doi: 10.1016/j.mtener.2020.100626

    2. [2]

      Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry[J]. Chem. Rev., 2020,120:7795-7866. doi: 10.1021/acs.chemrev.9b00628

    3. [3]

      Huang J H, Guo Z W, Ma Y Y, Bin D, Wang Y G, Xia Y Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes[J]. Small Methods, 2019,31800272. doi: 10.1002/smtd.201800272

    4. [4]

      Wang Y G, Yi J, Xia Y Y. Recent Progress in Aqueous Lithium‐Ion Batteries[J]. Adv. Energy Mater., 2012,2:830-840. doi: 10.1002/aenm.201200065

    5. [5]

      Muldoon J, Bucur C B, Gregory T. Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond[J]. Chem. Rev., 2014,114:11683-11720. doi: 10.1021/cr500049y

    6. [6]

      Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the Development of Advanced Li‐Ion Batteries[J]. Energy Environ Sci., 2011,4:3243-3262. doi: 10.1039/c1ee01598b

    7. [7]

      Zhong M E, Guan J D, Feng Q J, Wu X W, Xiao Z B, Zhang W, Tong S, Zhou N, Gong D X. Accelerated Polysulfide Redox Kinetics Revealed by Ternary Sandwich‐Type S@Co/N‐doped Carbon Nanosheet for High‐Performance Lithium‐Sulfur Batteries[J]. Carbon, 2018,128:86-96. doi: 10.1016/j.carbon.2017.11.084

    8. [8]

      Massé R C, Uchaker E, Cao G Z. Beyond Li‐Ion: Electrode Materials for Sodium and Magnesium‐Ion Batteries[J]. Sci. China Mater., 2015,58:715-766.

    9. [9]

      Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K. Aqueous Rechargeable Li and Na Ion Batteries[J]. Chem. Rev., 2014,114:11788-11827. doi: 10.1021/cr500232y

    10. [10]

      Wang J, Liu G Y, Fan K L, Zhao D, Liu B B, Jiang J B, Qian D, Yang C M, Li J H. N‐Doped Carbon Coated Anatase TiO2 Nanoparticles as Superior Na‐Ion Battery Anodes[J]. J. Colloid Interface Sci., 2018,517:134-143. doi: 10.1016/j.jcis.2018.02.001

    11. [11]

      WANG F H, LIU H B. Research Progress of Zinc Anode Materials for Aqueous Zinc Ion Recharge Battery[J]. Chinese J. Inorg. Chem., 2019,35:1999-2012. doi: 10.11862/CJIC.2019.239 

    12. [12]

      Li T C, Fang D L, Zhang J T, Pam M E, Leong Z Y, Yu J Z, Li X L, Yan D, Yang H Y. Recent Progress in Aqueous Zinc‐Ion Batteries: A Deep Insight into Zinc Metal Anodes[J]. J. Mater. Chem. A, 2021,9:6013-6028. doi: 10.1039/D0TA09111A

    13. [13]

      Song M, Tan H, Chao D L, Fan H J. Recent Advances in Zn‐Ion Batteries[J]. Adv. Funct. Mater., 2018,281802564. doi: 10.1002/adfm.201802564

    14. [14]

      Fang G Z, Zhou J, Pan A Q, Liang S Q. Recent Advances in Aqueous Zinc‐Ion Batteries[J]. ACS Energy Lett., 2018,3:2480-2501. doi: 10.1021/acsenergylett.8b01426

    15. [15]

      Zhu K Y, Wu T, Sun S C, Wen Y T, Huang K. Electrode Materials for Practical Rechargeable Aqueous Zn‐Ion Batteries: Challenges and Opportunities[J]. ChemElectroChem, 2020,7:2714-2734. doi: 10.1002/celc.202000472

    16. [16]

      Zhang T S, Tang Y, Guo S, Cao X X, Pan A Q, Fang G Z, Zhou J, Liang S Q. Fundamentals and Perspectives in Developing Zinc‐Ion Battery Electrolytes: A Comprehensive Review[J]. Energy Environ. Sci., 2020,13:4625-4665. doi: 10.1039/D0EE02620D

    17. [17]

      Guo S, Qin L P, Zhang T S, Zhou M, Zhou J, Fang G Z, Liang S Q. Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc‐Ion Batteries[J]. Energy Storage Mater., 2021,34:545-562. doi: 10.1016/j.ensm.2020.10.019

    18. [18]

      Zhang N, Cheng F Y, Liu Y C, Zhao Q, Lei K X, Chen C C, Liu X S, Chen J. Cation‐deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn‐Ion Battery[J]. J. Am. Chem. Soc., 2016,138:12894-12901. doi: 10.1021/jacs.6b05958

    19. [19]

      Yan H B, Li S M, Nan Y, Yang S B, Li B. Ultrafast Zinc‐Ion‐Conductor Interface toward High‐Rate and Stable Zinc Metal Batteries[J]. Adv. Energy Mater., 2021,112100186. doi: 10.1002/aenm.202100186

    20. [20]

      Chen J W, Vatamanu J, Xing L D, Borodin O, Chen H Y, Guan X C, Liu X, Xu K, Li W S. Improving Electrochemical Stability and Low‐Temperature Performance with Water/Acetonitrile Hybrid Electrolytes[J]. Adv. Energy Mater., 2020,101902654. doi: 10.1002/aenm.201902654

    21. [21]

      Zhang X Y, Lv R J, Tang W J, Li G J, Wang A X, Dong A P, Liu X J, Luo J Y. Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries[J]. Adv. Funct. Mater., 2020,302004187. doi: 10.1002/adfm.202004187

    22. [22]

      Yu Y X, Xu W, Liu X Q, Lu X H. Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zinc‐Ion Batteries: Recent Progress and Future Perspectives[J]. Adv. Sustainable Syst., 2020,42000082. doi: 10.1002/adsu.202000082

    23. [23]

      WU X W, LONG F N, XIANG Y H, JIANG J B, WU J H, XIONG L Z, ZHANG Q B. Research Progress of Anode Materials for Zinc‐Based Aqueous Battery in a Neutral or Weak Acid System[J]. Prog. Chem., 2021,33:1983-2001.  

    24. [24]

      Yang W H, Du X F, Zhao J W, Chen Z, Li J J, Xie J, Zhang Y J, Cui Z L, Kong Q Y, Zhao Z M, Wang C G, Zhang Q C, Cui G L. Hydrated Eutectic Electrolytes with Ligand‐Oriented Solvation Shells for Long‐Cycling Zinc‐Organic Batteries[J]. Joule, 2020,4:1557-1574. doi: 10.1016/j.joule.2020.05.018

    25. [25]

      Qiu H Y, Du X F, Zhao J W, Wang Y T, Ju J W, Chen Z, Hu Z L, Yan D P, Zhou X H, Cui G L. Zinc Anode‐Compatible InSitu Solid Electrolyte Interphase via Cation Solvation Modulation[J]. Nat. Commun., 2019,105374. doi: 10.1038/s41467-019-13436-3

    26. [26]

      Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Highly Reversible Zinc Metal Anode for Aqueous Batteries[J]. Nat. Mater., 2018,17:543-549. doi: 10.1038/s41563-018-0063-z

    27. [27]

      Hao J N, Yuan L B, Ye C, Chao D L, Davey K, Guo Z P, Qiao S Z. Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low‐Cost Antisolvents[J]. Angew. Chem. Int. Ed., 2021,60:7366-7375. doi: 10.1002/anie.202016531

    28. [28]

      Zhu Y P, Yin J, Zheng X L, Emwas A H, Lei Y J, Mohammed O F, Cui Y, Alshareef H N. Concentrated Dual‐Cation Electrolyte Strategy for Aqueous Zinc‐Ion Batteries[J]. Energy Environ. Sci., 2021,14:4463-4473. doi: 10.1039/D1EE01472B

    29. [29]

      Xing Z Y, Xu G F, Xie X S, Chen M J, Lu B A, Zhou J, Liang S Q. Highly Reversible Zinc‐Ion Battery Enabled by Suppressing Vanadium Dissolution through Inorganic Zn2+ Conductor Electrolyte[J]. Nano Energy, 2021,90106621. doi: 10.1016/j.nanoen.2021.106621

    30. [30]

      Liu Z X, Wang D H, Tang Z J, Liang G J, Yang Q, Li H F, Ma L T, Mo F N, Zhi C Y. A Mechanically Durable and Device‐Level Tough Zn‐MnO2 Battery with High Flexibility[J]. Energy Storage Mater., 2019,23:636-645. doi: 10.1016/j.ensm.2019.03.007

    31. [31]

      Gao J W, Xie X S, Liang S Q, Lu B A, Zhou J. Inorganic Colloidal Electrolyte for Highly Robust Zinc‐Ion Batteries[J]. Nano ‑ Micro Lett., 2021,1369. doi: 10.1007/s40820-021-00595-6

    32. [32]

      Zhang S J, Hao J N, Luo D, Zhang P F, Zhang B K, Davey K, Lin Z, Qiao S Z. Dual‐Function Electrolyte Additive for Highly Reversible Zn Anode[J]. Adv. Energy Mater., 2021,112102010. doi: 10.1002/aenm.202102010

    33. [33]

      Yang H J, Qiao Y, Chang Z, Deng H, Zhu X Y, Zhu R J, Xiong Z T, He P, Zhou H S. Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery[J]. Adv. Mater., 2021,332102415. doi: 10.1002/adma.202102415

    34. [34]

      ZHOU S H, WU X W, XIANG Y H, ZHU L, LIU Z X, Zhao C X. Manganese‐Based Cathode Materials for Aqueous Zinc Ion Batteries[J]. Prog. Chem., 2020,33:649-669.  

    35. [35]

      Wan F, Niu Z Q. Design Strategies for Vanadium‐Based Aqueous Zinc‐Ion Batteries[J]. Angew. Chem. Int. Ed., 2019,58:16358-16367. doi: 10.1002/anie.201903941

    36. [36]

      Yang S N, Zhang M S, Wu X W, Wu X S, Zeng F H, Li Y T, Duan S Y, Fan D H, Yang Y, Wu X M. The Excellent Electrochemical Performances of ZnMn2O4/Mn2O3: The Composite Cathode Material for Potential Aqueous Zinc Ion Batteries[J]. J. Electroanal. Chem., 2019,832:69-74. doi: 10.1016/j.jelechem.2018.10.051

    37. [37]

      Guo X, Fang G Z, Zhang W Y, Zhou J, Shan L T, Wang L B, Wang C, Lin T Q, Tang Y, Liang S Q. Mechanistic Insights of Zn2+ Storage in Sodium Vanadates[J]. Adv. Energy Mater., 2018,81801819. doi: 10.1002/aenm.201801819

    38. [38]

      Tang B Y, Fang G Z, Zhou J, Wang L B, Lei Y P, Wang C, Lin T Q, Tang Y, Liang S Q. Potassium Vanadates with Stable Structure and Fast Ion Diffusion Channel as Cathode for Rechargeable Aqueous Zinc‐Ion Batteries[J]. Nano Energy, 2018,51:579-587. doi: 10.1016/j.nanoen.2018.07.014

    39. [39]

      Tang B Y, Zhou J, Fang G Z, Liu F, Zhu C Y, Wang C, Pan A Q, Liang S Q. Engineering the Interplanar Spacing of Ammonium Vanadates as a High‐Performance Aqueous Zinc‐Ion Battery Cathode[J]. J. Mater. Chem. A, 2019,7:940-945. doi: 10.1039/C8TA09338E

    40. [40]

      Shan L T, Yang Y Q, Zhang W Y, Chen H J, Fang G Z, Zhou J, Liang S Q. Observation of Combination Displacement/Intercalation Reaction in Aqueous Zinc‐Ion Battery[J]. Energy Storage Mater., 2019,18:10-14. doi: 10.1016/j.ensm.2018.08.008

    41. [41]

      Yang Y Q, Tang Y, Fang G Z, Shan L T, Guo J S, Zhang W Y, Wang C, Wang L B, Zhou J, Liang S Q. Li+ Intercalated V2O5·nH2O with Enlarged Layer Spacing and Fast Ion Diffusion as an Aqueous Zinc‐Ion Battery Cathode[J]. Energy Environ. Sci., 2018,11:3157-3162. doi: 10.1039/C8EE01651H

    42. [42]

      Shan L T, Zhou J, Han M M, Fang G Z, Cao X X, Wu X W, Liang S Q. Reversible Zn‐Driven Reduction Displacement Reaction in Aqueous Zinc‐Ion Battery[J]. J. Mater. Chem. A, 2019,7:7355-7359. doi: 10.1039/C9TA00125E

    43. [43]

      Han M M, Huang J W, Liang S Q, Shan L T, Xie X S, Yi Z J, Wang Y R, Guo S, Zhou J. Oxygen Defects in β‐MnO2 Enabling High‐Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery[J]. iScience, 2020,23100797. doi: 10.1016/j.isci.2019.100797

    44. [44]

      Zhu C Y, Fang G Z, Zhou J, Guo J H, Wang Z Q, Wang C, Li J Y, Tang Y, Liang S Q. Binder‐Free Stainless Steel@Mn3O4 Nanoflower Composite: A High‐Activity Aqueous Zinc‐Ion Battery Cathode with High‐Capacity and Long‐Cycle‐Life[J]. J. Mater. Chem. A, 2018,6:9677-9683. doi: 10.1039/C8TA01198B

    45. [45]

      Zhu C Y, Fang G Z, Liang S Q, Chen Z X, Wang Z Q, Ma J Y, Wang H, Tang B Y, Zheng X S, Zhou J. Electrochemically Induced Cationic Defect in MnO Intercalation Cathode for Aqueous Zinc‐Ion Battery[J]. Energy Storage Mater., 2019,24:394-401.

    46. [46]

      Fang G Z, Zhu C Y, Chen M H, Zhou J, Tang B Y, Cao X X, Zheng X S, Pan A Q, Liang S Q. Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High‐Energy Density and Durable Aqueous Zinc‐Ion Battery[J]. Adv. Funct. Mater., 2019,291808375. doi: 10.1002/adfm.201808375

    47. [47]

      Zhong Y J, Xu X M, Veder J P, Shao Z P. Self‐Recovery Chemistry and Cobalt‐Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc‐Ion Batteries[J]. iScience, 2020,23100943. doi: 10.1016/j.isci.2020.100943

    48. [48]

      Su L J, Liu L Y, Liu B, Meng J N, Yan X B. Revealing the Impact of Oxygen Dissolved in Electrolytes on Aqueous Zinc‐Ion Batteries[J]. iScience, 2020,23100995. doi: 10.1016/j.isci.2020.100995

    49. [49]

      Zhao Y L, Zhu Y H, Zhang X B. Challenges and Perspectives for Manganese‐Based Oxides for Advanced Aqueous Zinc‐Ion Batteries[J]. InfoMat, 2020,2:237-260. doi: 10.1002/inf2.12042

    50. [50]

      Wan F, Zhang L L, Dai X, Wang X, Niu Z Q, Chen J. Aqueous Rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers[J]. Nat. Commun., 2018,91656. doi: 10.1038/s41467-018-04060-8

    51. [51]

      Li B, Xue J, Han C, Liu N, Ma K X, Zhang R C, Wu X W, Dai L, Wang L, He Z X. A Hafnium Oxide‐Coated Dendrite‐Free Zinc Anode for Rechargeable Aqueous Zinc‐Ion Batteries[J]. J. Colloid Interface Sci., 2021,599:467-475. doi: 10.1016/j.jcis.2021.04.113

    52. [52]

      Wang T T, Li C P, Xie X S, Lu B A, He Z X, Liang S Q, Zhou J. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives[J]. ACS Nano, 2020,14:16321-16347. doi: 10.1021/acsnano.0c07041

    53. [53]

      ZHOU J, SHAN L T, TANG B Y, LIANG S Q. Development and Challenges of Aqueous Rechargeable Zinc Batteries[J]. Chin. Sci. Bull., 2020,65:3562-3584.  

    54. [54]

      Xue P, Guo C, Wang N Y, Zhu K P, Jing S, Kong S, Zhang X J, Li L, Li H P, Feng Y B, Gong W B, Li Q L. Synergistic Manipulation of Zn2+ Ion Flux and Nucleation Induction Effect Enabled by 3D Hollow SiO2/TiO2/Carbon Fiber for Long‐Lifespan and Dendrite‐Free Zn‐Metal Composite Anodes[J]. Adv. Funct. Mater., 2021,312106417. doi: 10.1002/adfm.202106417

    55. [55]

      Xie X S, Liang S Q, Gao J W, Guo S, Guo J B, Wang C, Xu G Y, Wu X W, Chen G, Zhou J. Manipulating the Ion‐Transfer Kinetics and Interface Stability for High‐Performance Zinc Metal Anodes[J]. Energy Environ. Sci., 2020,13:503-510. doi: 10.1039/C9EE03545A

    56. [56]

      Wu B, Zhang G B, Yan M Y, Xiong T F, He P, He L, Xu X, Mai L Q. Graphene Scroll‐Coated α‐MnO2 Nanowires as High‐Performance Cathode Materials for Aqueous Zn‐Ion Battery[J]. Small, 2018,14e1703850. doi: 10.1002/smll.201703850

    57. [57]

      Shan L T, Wang Y R, Liang S Q, Tang B Y, Yang Y Q, Wang Z Q, Lu B A, Zhou J. Interfacial Adsorption‐Insertion Mechanism Induced by Phase Boundary toward Better Aqueous Zn‐Ion Battery[J]. InfoMat, 2021,3:1028-1036. doi: 10.1002/inf2.12223

    58. [58]

      Liu M Q, Zhao Q H, Liu H, Yang J L, Chen X, Yang L Y, Cui Y H, Huang W Y, Zhao W G, Song A, Wang Y T, Ding S X, Song Y L, Qian G Y, Chen H B, Pan F. Tuning Phase Evolution of β‐MnO2 during Microwave Hydrothermal Synthesis for High‐Performance Aqueous Zn Ion Battery[J]. Nano Energy, 2019,64103942. doi: 10.1016/j.nanoen.2019.103942

    59. [59]

      Fu Y Q, Wei Q L, Zhang G X, Wang X M, Zhang J H, Hu Y F, Wang D N, Zuin L, Zhou T, Wu Y C, Sun S H. High‐Performance Reversible Aqueous Zn‐Ion Battery Based on Porous MnOx Nanorods Coated by MOF‐Derived N‐Doped Carbon[J]. Adv. Energy Mater., 2018,81801445. doi: 10.1002/aenm.201801445

    60. [60]

      Zhou J H, Xie M, Wu F, Mei Y, Hao Y T, Huang R L, Wei G L, Liu A N, Li L, Chen R J. Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn‐Ion Batteries[J]. Adv. Mater., 2021,34e2101649.

    61. [61]

      Zhao Z M, Zhao J W, Hu Z L, Li J D, Li J J, Zhang Y J, Wang C, Cui G L. Long‐Life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener‐Inspired Interphase[J]. Energy Environ. Sci., 2019,12:1938-1949. doi: 10.1039/C9EE00596J

    62. [62]

      Cao L S, Li D, Soto F A, Ponce V, Zhang B, Ma L, Deng T, Seminario J M, Hu E, Yang X Q, Balbuena P B, Wang C S. Highly Reversible Aqueous Zinc Batteries Enabled by Zincophilic‐Zincophobic Interfacial Layers and Interrupted Hydrogen‐Bond Electrolytes[J]. Angew. Chem. Int. Ed., 2021,60:18845-18851. doi: 10.1002/anie.202107378

    63. [63]

      Zhang Y M, Howe J D, Ben‐Yoseph S, Wu Y T, Liu N. Unveiling the Origin of Alloy‐Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries[J]. ACS Energy Lett., 2021,6:404-412. doi: 10.1021/acsenergylett.0c02343

    64. [64]

      Shi X D, Xu G F, Liang S Q, Li C P, Guo S, Xie X S, Ma X M, Zhou J. Homogeneous Deposition of Zinc on Three‐Dimensional Porous Copper Foam as a Superior Zinc Metal Anode[J]. ACS Sustainable Chem. Eng., 2019,7:17737-17746. doi: 10.1021/acssuschemeng.9b04085

    65. [65]

      Bayaguud A, Luo X, Fu Y P, Zhu C B. Cationic Surfactant‐Type Electrolyte Additive Enables Three‐Dimensional Dendrite‐Free Zinc Anode for Stable Zinc‐Ion Batteries[J]. ACS Energy Lett., 2020,5:3012-3020. doi: 10.1021/acsenergylett.0c01792

    66. [66]

      Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries[J]. Adv. Energy Mater., 2018,81801090. doi: 10.1002/aenm.201801090

    67. [67]

      Deng C B, Xie X S, Han J W, Tang Y, Gao J W, Liu C X, Shi X D, Zhou J, Liang S Q. A Sieve‐Functional and Uniform‐Porous Kaolin Layer toward Stable Zinc Metal Anode[J]. Adv. Funct. Mater., 2020,302000599. doi: 10.1002/adfm.202000599

    68. [68]

      Deng C B, Xie X S, Han J W, Lu B A, Liang S Q, Zhou J. Stabilization of Zn Metal Anode through Surface Reconstruction of a Cerium‐Based Conversion Film[J]. Adv. Funct. Mater., 2021,312103227. doi: 10.1002/adfm.202103227

    69. [69]

      Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. "Water‐in‐Salt"Electrolyte Enables High‐Voltage Aqueous Lithium‐Ion Chemistries[J]. Science, 2015,350:938-943. doi: 10.1126/science.aab1595

    70. [70]

      Zhang C, Holoubek J, Wu X Y, Daniyar A, Zhu L D, Chen C, Leonard D P, Rodríguez‐Pérez I A, Jiang J X, Fang C, Ji X L. A ZnCl2 Waterin‐salt Electrolyte for a Reversible Zn Metal Anode[J]. Chem. Commun., 2018,54:14097-14099. doi: 10.1039/C8CC07730D

    71. [71]

      Zhang C, Shin W, Zhu L, Chen C, Neuefeind J C, Xu Y, Allec S I, Liu C, Wei Z, Daniyar A, Jiang J X, Fang C, Greaney P A, Ji X. The Electrolyte Comprising More Robust Water and Superhalides Transforms Zn‐Metal Anode Reversibly and Dendrite‐Free[J]. Carbon Energy, 2020,3:339-348.

    72. [72]

      Ni Q, Jiang H, Sandstrom S, Bai Y, Ren H X, Wu X Y, Guo Q B, Yu D X, Wu C, Ji X L. A Na3V2(PO4)2O1.6F1.4 Cathode of Zn‐Ion Battery Enabled by a Water‐in‐Bisalt Electrolyte[J]. Adv. Funct. Mater., 2020,302003511. doi: 10.1002/adfm.202003511

    73. [73]

      Liu C X, Xie X S, Lu B A, Zhou J, Liang S Q. Electrolyte Strategies Toward Better Zinc‐Ion Batteries[J]. ACS Energy Lett., 2021,6:1015-1033. doi: 10.1021/acsenergylett.0c02684

    74. [74]

      Zeng Y X, Zhang X Y, Meng Y, Yu M H, Yi J N, Wu Y Q, Lu X H, Tong Y. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi‐Solid‐State Zn‐MnO2 Battery[J]. Adv. Mater., 2017,291700274. doi: 10.1002/adma.201700274

    75. [75]

      Zhang S L, Yu N S, Zeng S, Zhou S S, Chen M H, Di J T, Li Q W. An Adaptive and Stable Bio‐electrolyte for Rechargeable Zn‐Ion Batteries[J]. J. Mater. Chem. A, 2018,6:12237-12243. doi: 10.1039/C8TA04298E

    76. [76]

      Zhang Q C, Li C W, Li Q L, Pan Z H, Sun J, Zhou Z Y, He B, Man P, Xie L Y, Kang L X, Wang X N, Yang J, Zhang T, Shum P P, Li Q W, Yao Y Q, Wei L. Flexible and High‐Voltage Coaxial‐Fiber Aqueous Rechargeable Zinc‐Ion Battery[J]. Nano Lett., 2019,19:4035-4042. doi: 10.1021/acs.nanolett.9b01403

    77. [77]

      Sun L, Yao Y Q, Dai L X, Jiao M L, Ding B F, Yu Q M, Tang J, Liu B L. Sustainable and High‐Performance Zn Dual‐Ion Batteries with a Hydrogel‐Based Water‐in‐Salt Electrolyte[J]. Energy Storage Mater., 2022,47187. doi: 10.1016/j.ensm.2022.02.012

    78. [78]

      Wang D H, Li H F, Liu Z X, Tang Z J, Liang G J, Mo F N, Yang Q, Ma L T, Zhi C Y. A Nanofibrillated Cellulose/Polyacrylamide Electrolyte‐Based Flexible and Sewable High‐Performance Zn‐MnO2 Battery with Superior Shear Resistance[J]. Small, 2018,14e1803978. doi: 10.1002/smll.201803978

    79. [79]

      Chan C Y, Wang Z Q, Jia H, Ng P F, Chow L, Fei B. Recent Advances of Hydrogel Electrolytes in Flexible Energy Storage Devices[J]. J. Mater. Chem. A, 2021,9:2043-2069. doi: 10.1039/D0TA09500A

    80. [80]

      Yu P, Zeng Y X, Zhang H Z, Yu M H, Tong Y X, Lu X H. Flexible Zn‐Ion Batteries: Recent Progresses and Challenges[J]. Small, 2019,15e1804760. doi: 10.1002/smll.201804760

    81. [81]

      Lv Y Q, Xiao Y, Ma L T, Zhi C Y, Chen S M. Recent Advances in Electrolytes for"Beyond Aqueous"Zinc‐Ion Batteries[J]. Adv. Mater., 2021,34e2106409.

    82. [82]

      Mo F N, Chen Z, Liang G J, Wang D H, Zhao Y W, Li H F, Dong B B, Zhi C Y. Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Zn‐MnO2 Batteries with Superior Rate Capabilities[J]. Adv. Energy Mater., 2020,102000035. doi: 10.1002/aenm.202000035

    83. [83]

      Chen Z, Li X L, Wang D H, Yang Q, Ma L T, Huang Z D, Liang G J, Chen A, Guo Y, Dong B B, Huang X Y, Yang C, Zhi C Y. Grafted MXene/Polymer Electrolyte for High Performance Solid Zinc Batteries with Enhanced Shelf Life at Low/High Temperatures[J]. Energy Environ. Sci., 2021,14:3492-3501. doi: 10.1039/D1EE00409C

    84. [84]

      Li H F, Han C P, Huang Y, Huang Y, Zhu M S, Pei Z X, Xue Q, Wang Z F, Liu Z X, Tang Z J, Wang Y K, Kang F Y, Li B H, Zhi C Y. An Extremely Safe and Wearable Solid‐State Zinc Ion Battery Based on a Hierarchical Structured Polymer Electrolyte[J]. Energy Environ. Sci., 2018,11:941-951. doi: 10.1039/C7EE03232C

    85. [85]

      Tang Y, Liu C X, Zhu H R, Xie X S, Gao J W, Deng C B, Han M M, Liang S Q, Zhou J. Ion‐Confinement Effect Enabled by Gel Electrolyte for Highly Reversible Dendrite‐Free Zinc Metal Anode[J]. Energy Storage Mater., 2020,27:109-116. doi: 10.1016/j.ensm.2020.01.023

    86. [86]

      Li C P, Xie X S, Liu H, Wang P J, Deng C B, Lu B A, Zhou J, Liang S Q. Integrated'All‐in‐One'Strategy to Stabilize Zinc Anodes for High‐IPerformance Zinc‐Ion Batteries[J]. Nat. Sci. Rev., 2022,9nwab177. doi: 10.1093/nsr/nwab177

    87. [87]

      Wang M Q, Emre A E, Tung S, Gerber A, Wang D D, Huang Y D, Cecen V, Kotov N A. Biomimetic Solid‐State Zn2+ Electrolyte for Corrugated Structural Batteries[J]. ACS Nano, 2019,13:1107-1115.

    88. [88]

      Karan S, Sahu T B, Sahu M, Mahipal Y K, Agrawal R C. Investigations on Materials and Ion Transport Properties of Zn2+ Conducting Nano‐Composite Polymer Electrolytes (NCPEs): [(90PEO∶10Zn (CF3SO3)2)+xZnO][J]. Mater. Today Commun., 2017,13:269-274. doi: 10.1016/j.mtcomm.2017.10.009

    89. [89]

      Lin D C, Liu W, Liu Y Y, Lee H R, Hsu P C, Liu K, Cui Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)[J]. Nano Lett, 2016,16:459-465. doi: 10.1021/acs.nanolett.5b04117

    90. [90]

      Ma L T, Chen S M, Li N, Liu Z X, Tang Z J, Zapien J A, Chen S M, Fan J, Zhi C Y. Hydrogen‐Free and Dendrite‐Free All‐Solid‐State Zn‐Ion Batteries[J]. Adv. Mater., 2020,32e1908121. doi: 10.1002/adma.201908121

    91. [91]

      Xie X S, Fu H W, Fang Y, Lu B A, Zhou J, Liang S Q. Manipulating Ion Concentration to Boost Two‐Electron Mn4+/Mn2+ Redox Kinetics through a Colloid Electrolyte for High‐Capacity Zinc Batteries[J]. Adv. Energy Mater., 2021,122102393.

    92. [92]

      Yimin D, Niu L, Hui L, Zou J Q, Yu L P, Feng Q J. Cu‐Ni Alloy Catalyzed Electrochemical Carboxylation of Benzyl Bromide with Carbon Dioxide in Ionic Liquid 1‐Butyl‐3‐methylimidazolium Tetra‐fluoroborate[J]. Int. J. Electrochem. Sci., 2018,13:1084-1095.

    93. [93]

      Zhang Q H, Vigier K D O, Royer S, Jerome F. Deep Eutectic Solvents: Syntheses, Properties and Applications[J]. Chem. Soc. Rev., 2012,41:7108-7146. doi: 10.1039/c2cs35178a

    94. [94]

      Zhang C K, Zhang L Y, Ding Y, Guo X, Yu G H. Eutectic Electrolytes for High‐Energy‐Density Redox Flow Batteries[J]. ACS Energy Lett., 2018,3:2875-2883. doi: 10.1021/acsenergylett.8b01899

    95. [95]

      Kao‐Ian W, Pornprasertsuk R, Thamyongkit P, Maiyalagan T, Kheawhom S. Rechargeable Zinc‐Ion Battery Based on Choline Chloride‐Urea Deep Eutectic Solvent[J]. J. Electrochem. Soc., 2019,166:A1063-A1069. doi: 10.1149/2.0641906jes

    96. [96]

      Abbott A P, Barron J C, Frisch G, Ryder K S, Silva A F. The Effect of Additives on Zinc Electrodeposition from Deep Eutectic Solvents[J]. Electrochim. Acta, 2011,56:5272-5279. doi: 10.1016/j.electacta.2011.02.095

    97. [97]

      Zhao J W, Zhang J, Yang W H, Chen B B, Zhao Z M, Qiu H Y, Dong S M, Zhou X H, Cui G L, Chen L Q". Water‐in‐Deep Eutectic Solvent" Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries[J]. Nano Energy, 2019,57:625-634. doi: 10.1016/j.nanoen.2018.12.086

    98. [98]

      Shi J, Sun T, Bao J, Zheng S, Du H, Li L, Yuan X, Ma T, Tao Z. "Water‐in‐Deep Eutectic Solvent"Electrolytes for High‐Performance Aqueous Zn‐Ion Batteries[J]. Adv. Funct. Mater., 2021,312102035. doi: 10.1002/adfm.202102035

    99. [99]

      Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X T, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Reversible Epitaxial Electrodeposition of Metals in Battery Anodes[J]. Science, 2019,366:645-648. doi: 10.1126/science.aax6873

    100. [100]

      Zhang K, Yan Z H, Chen J. Electrodeposition Accelerates Metal‐Based Batteries[J]. Joule, 2020,4:10-11. doi: 10.1016/j.joule.2019.12.012

    101. [101]

      Li G X, Liu Z, Huang Q Q, Gao Y, Regula M, Wang D W, Chen L Q, Wang D H. Stable Metal Battery Anodes Enabled by Polyethylenimine Sponge Hosts by Way of Electrokinetic Effects[J]. Nat. Energy, 2018,3:1076-1083. doi: 10.1038/s41560-018-0276-z

    102. [102]

      Wang P J, Xie X S, Xing Z Y, Chen X H, Fang G Z, Lu B A, Zhou J, Liang S Q, Fan H J. Mechanistic Insights of Mg2+‐Electrolyte Additive for High‐Energy and Long‐Life Zinc‐Ion Hybrid Capacitors[J]. Adv. Energy Mater., 2021,112101158. doi: 10.1002/aenm.202101158

    103. [103]

      Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F. Dendrite‐Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn‐Based Batteries[J]. Angew. Chem. Int. Ed., 2016,55:2889-2893. doi: 10.1002/anie.201509364

    104. [104]

      Li D, Cao L S, Deng T, Liu S F, Wang C S. Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries[J]. Angew. Chem. Int. Ed., 2021,60:13035-13041. doi: 10.1002/anie.202103390

    105. [105]

      Han D, Wang Z X, Lu H T, Li H, Cui C J, Zhang Z C, Sun R, Geng C N, Liang Q H, Guo X X, Mo Y B, Zhi X, Kang F Y, Weng Z, Yang Q H. A Self‐Regulated Interface toward Highly Reversible Aqueous Zinc Batteries[J]. Adv. Energy Mater., 2022,122102982. doi: 10.1002/aenm.202102982

    106. [106]

      Hou Z G, Zhang X Q, Li X N, Zhu Y C, Liang J W, Qian Y T. Sur‐factant Widens the Electrochemical Window of an Aqueous Electrolyte for Better Rechargeable Aqueous Sodium/Zinc Battery[J]. J. Mater. Chem. A, 2017,5:730-738. doi: 10.1039/C6TA08736A

    107. [107]

      Zhang Q, Luan J Y, Fu L, Wu S G, Tang Y G, Ji X B, Wang H Y. The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive[J]. Angew. Chem. Int. Ed., 2019,131:15841-15847.

    108. [108]

      Xu W N, Zhao K N, Huo W C, Wang Y Z, Yao G, Gu X, Cheng H W, Mai L Q, Hu C G, Wang X D. Diethyl Ether as Self‐Healing Electrolyte Additive Enabled Long‐Life Rechargeable Aqueous Zinc Ion Batteries[J]. Nano Energy, 2019,62:275-281. doi: 10.1016/j.nanoen.2019.05.042

    109. [109]

      Qin R Z, Wang Y T, Zhang M Z, Wang Y, Ding S X, Song A, Yi H C, Yang L Y, Song Y L, Cui Y H, Liu J, Wang Z Q, Li S N, Zhao Q H, Pan F. Tuning Zn2+ Coordination Environment to Suppress Dendrite Formation for High‐Performance Zn‐Ion Batteries[J]. Nano Energy, 2021,80105478. doi: 10.1016/j.nanoen.2020.105478

    110. [110]

      Dong Y, Miao L C, Ma G Q, Di S L, Wang Y Y, Wang L B, Xu J Z, Zhang N. Non‐concentrated Aqueous Electrolytes with Organic Solvent Additives for Stable Zinc Batteries[J]. Chem. Sci., 2021,12:5843-5852. doi: 10.1039/D0SC06734B

    111. [111]

      Cao L S, Li D, Hu E Y, Xu J J, Deng T, Ma L, Wang Y, Yang X Q, Wang C S. Solvation Structure Design for Aqueous Zn Metal Batteries[J]. J. Am. Chem. Soc., 2020,142:21404-21409. doi: 10.1021/jacs.0c09794

    112. [112]

      Sun P, Ma L, Zhou W H, Qiu M J, Wang Z L, Chao D L, Mai W J. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite‐Free Zn Ion Batteries Achieved by a Low‐Cost Glucose Additive[J]. Angew. Chem. Int. Ed., 2021,60:18247-18255. doi: 10.1002/anie.202105756

    113. [113]

      Li T C, Lim Y V, Li X L, Luo S Z, Lin C J, Fang D L, Xia S W, Wang Y, Yang H Y. A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage[J]. Adv. Energy Mater., 2022,122103231. doi: 10.1002/aenm.202103231

    114. [114]

      Wang B J, Zheng R, Yang W, Han X, Hou C Y, Zhang Q H, Li Y G, Li K R, Wang H Z. Synergistic Solvation and Interface Regulations of Eco‐friendly Silk Peptide Additive Enabling Stable Aqueous Zinc‐Ion Batteries[J]. Adv. Funct. Mater., 2022,322112693. doi: 10.1002/adfm.202112693

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(86)
  • Abstract views(2067)
  • HTML views(714)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return