Citation: Hui XU, Lu ZHAO, Yun-Feng BAI, Feng FENG. Research Progress in Cancer Treatment of Aptamer Functionalized Gold Nanorods[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1226-1240. doi: 10.11862/CJIC.2022.129 shu

Research Progress in Cancer Treatment of Aptamer Functionalized Gold Nanorods

Figures(7)

  • Gold nanorods (GNRs) have attracted great attention in various biomedical applications such as drug delivery, photothermal therapy, photodynamic therapy, and photoacoustic imaging because of their larger specific surface area, easy synthesis, surface modification, stability, and strong absorption and scattering in NIR region. Aptamers are oligonucleotide sequences with a length of about 20-80 bases which have abilities to bind to specific target molecules, enabling specific recognition and binding to cancer cells or their membrane proteins. Aptamer could act as ligands and be modified onto GNRs, aptamer-functionalized GNRs can actively target and identify cancer cells, showing a good application prospect in the field of cancer therapy. Herein, we overview the recent progress in the designs and applications of aptamer-targeted GNRs for cancer therapy. GNRs can be used as photothermal agents, as well as nanocarriers of drugs, photosensitizers, and small interfering RNA to achieve cancer combina- tion therapies. According to the differences in the mechanism of cancer therapy, the applications of aptamer-functionalized GNRs nanosystems for cancer therapy are reviewed, which are divided into four aspects: photothermal therapy, photodynamic therapy, chemotherapy, and combination therapy. Combination therapy includes photothermal therapy/chemotherapy, photothermal therapy/photodynamic therapy, photothermal therapy/gene therapy, photothermal therapy/chemotherapy/gene therapy, and photothermal therapy/chemotherapy/photodynamic therapy. Finally, we elaborate on the current challenge and future perspectives of aptamer-functionalized GNRs for cancer therapy.
  • 加载中
    1. [1]

      Siegel R L, Miller K D, Fuchs H E, Jemal A. Cancer Statistics, 2022[J]. CA-Cancer J. Clin., 2022,72(1):7-33.

    2. [2]

      Macdonald J S, Smalley S R, Benedetti J, Hundahl S A, Estes N C, Stemmermann G N, Haller D G, Ajani J A, Gunderson L L, Jessup J M, Martenson J A. Chemoradiotherapy after Surgery Compared with Surgery Alone for Adenocarcinoma of the Stomach or Gastroesophageal Junction[J]. N. Engl. J. Med., 2001,345(10):725-730.

    3. [3]

      Haine A T, Niidome T. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery[J]. Chem. Pharm. Bull., 2017,65(7):625-628.

    4. [4]

      Shanmugam V, Selvakumar S, Yeh C S. Near-Infrared Light-Responsive Nanomaterials in Cancer Therapeutics[J]. Chem. Soc. Rev., 2014,43(17):6254-6287.

    5. [5]

      Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra B D. Recent Advances in Carbon Based Nanosystems for Cancer Theranostics[J]. Biomater. Sci., 2017,5(5):901-952.

    6. [6]

      Liu S, Pan X T, Liu H Y. Two-Dimensional Nanomaterials for Photothermal Therapy[J]. Angew. Chem. Int. Ed., 2020,59(15):5890-5900.

    7. [7]

      Huang H, Feng W, Chen Y. Two-Dimensional Biomaterials: Material Science, Biological Effect and Biomedical Engineering Applications[J]. Chem. Soc. Rev., 2021,50(20):11381-11485.

    8. [8]

      Gupta N, Chan Y H, Saha S, Liu M H. Recent Development in Near-Infrared Photothermal Therapy Based on Semiconducting Polymer Dots[J]. ACS Appl. Polym. Mater., 2020,2(10):4195-4221.

    9. [9]

      Wang Y, Meng H M, Song G, Li Z, Zhang X B. Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy[J]. ACS Appl. Polym. Mater., 2020,2(10):4258-4272.

    10. [10]

      Zhu H J, Cheng P H, Chen P, Pu K Y. Recent Progress in the Development of Near-Infrared Organic Photothermal and Photodynamic Nanotherapeutics[J]. Biomater. Sci., 2018,6(4):746-765.

    11. [11]

      Hu Q L, Huang Z M, Duan Y K, Fu Z W, Liu B. Reprogramming Tumor Microenvironment with Photothermal Therapy[J]. Bioconjugate Chem., 2020,31(5):1268-1278.

    12. [12]

      Liu Y J, Bhattarai P, Dai Z F, Chen X Y. Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer[J]. Chem. Soc. Rev., 2019,48(7):2053-2108.

    13. [13]

      Lohse S E, Murphy C J. The Quest for Shape Control: A History of Gold Nanorod Synthesis[J]. Chem. Mater., 2013,25(8):1250-1261.

    14. [14]

      Huang X H, Jain P K, El-Sayed I H, El-Sayed M A. Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles[J]. Lasers Med. Sci., 2007,23(3):217-228.

    15. [15]

      Alkilany A M, Thompson L B, Boulos S P, Sisco P N, Murphy C J. Gold Nanorods: Their Potential for Photothermal Therapeutics and Drug Delivery, Tempered by the Complexity of Their Biological Interactions[J]. Adv. Drug Deliver Rev., 2012,64(2):190-199.

    16. [16]

      Xu W Z, Lin Q L, Yin Y Q, Xu D, Huang X H, Xu B C, Wang G W. A Review on Cancer Therapy Based on the Photothermal Effect of Gold Nanorod[J]. Curr. Pharm. Des., 2019,25(46):4836-4837.

    17. [17]

      Chen F, Si P, De La Zerda A, Jokerst J V, Myung D. Gold Nanoparticles to Enhance Ophthalmic Imaging[J]. Biomater. Sci., 2021,9(2):367-390.

    18. [18]

      Adnan N N M, Cheng Y Y, Ong N M N, Kamaruddin T T, Rozlan E, Schmidt T W, Duong H T T, Boyer C. Effect of Gold Nanoparticle Shapes for Phototherapy and Drug Delivery[J]. Polym. Chem., 2016,7(16):2888-2903.

    19. [19]

      González-Rubio G, Kumar V, Llombart P, Díaz-Núñez P, Bladt E, Altantzis T, Bals S, Peña-Rodríguez O, Noya E G, Macdowell L G, Guerrero-Martínez A, Liz-Marzán L M. Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods[J]. ACS Nano, 2019,13(4):4424-4435.

    20. [20]

      Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine[J]. Acc. Chem. Res., 2008,41(12):1578-1586.

    21. [21]

      Kim F, Song J H, Yang P D. Photochemical Synthesis of Gold Nanorods[J]. J. Am. Chem. Soc., 2002,124(48):14316-14317.

    22. [22]

      Jana N R, Gearheart L, Murphy C J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J]. J. Phys. Chem. B, 2001,105(19):4065-4067.

    23. [23]

      Zheng J P, Cheng X Z, Zhang H, Bai X P, Ai R Q, Shao L, Wang J F. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles[J]. Chem. Rev., 2021,121(21):13342-13453.

    24. [24]

      Burrows N D, Lin W, Hinman J G, Dennison J M, Vartanian A M, Abadeer N S, Grzincic E M, Jacob L M, Li J, Murphy C J. Surface Chemistry of Gold Nanorods[J]. Langmuir, 2016,32(39):9905-9921.

    25. [25]

      Marasini R, Pitchaimani A, Nguyen T D T, Comer J, Aryal S. The Influence of Polyethylene Glycol Passivation on the Surface Plasmon Resonance Induced Photothermal Properties of Gold Nanorods[J]. Nanoscale, 2018,10(28):13684-13693.

    26. [26]

      Abdelrasoul G N, Magrassi R, Dante S, D'amora M, D'abbusco M S, Pellegrino T, Diaspro A. PEGylated Gold Nanorods as Optical Trackers for Biomedical Applications: An In Vivo and In Vitro Comparative Study[J]. Nanotechnology, 2016,27(25)255101.

    27. [27]

      Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y. PEG-Modified Gold Nanorods with a Stealth Character for In Vivo Applications[J]. J. Controlled Release, 2006,114(3):343-347.

    28. [28]

      Manivasagan P, Bharathiraja S, Santha Moorthy M, Oh Y O, Song K, Seo H, Oh J. Anti-EGFR Antibody Conjugation of Fucoidan-Coated Gold Nanorods as Novel Photothermal Ablation Agents for Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(17):14633-14646.

    29. [29]

      Cao W, Wang X D, Song L, Wang P Y, Hou X M, Zhang H C, Tian X D, Liu X L, Zhang Y. Folic Acid-Conjugated Gold Nanorod@Polypyrrole@Fe3O4 Nanocomposites for Targeted MR/CT/PA Multimodal Imaging and Chemo- Photothermal Therapy[J]. RSC Adv., 2019,9(33):18874-18887.

    30. [30]

      Manivasagan P, Jun S W, Nguyen V T, Truong N T P, Hoang G, Mondal S, Santha Moorthy M, Kim H, Vy Phan T T, Doan V H M, Kim C S, Oh J. A Multifunctional Near-Infrared Laser-Triggered Drug Delivery System Using Folic Acid Conjugated Chitosan Oligosaccharide Encapsulated Gold Nanorods for Targeted Chemo-Photothermal Therapy[J]. J. Mater. Chem. B, 2019,7(24):3811-3825.

    31. [31]

      Zhang J, Luo X, Wu Y P, Wu F, Li Y F, He R R, Liu M X. Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-Photothermal Combination Therapy toward Breast Cancer[J]. ACS Appl. Mater. Interfaces, 2019,11(4):3690-3703.

    32. [32]

      Li C, Feng K, Xie N, Zhao W H, Ye L, Chen B, Tung C H, Wu L Z. Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy[J]. ACS Appl. Nano Mater., 2020,3(6):5070-5078.

    33. [33]

      Zhong Y A, Meng F H, Deng C, Zhong Z Y. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy[J]. Biomacromolecules, 2014,15(6):1955-1969.

    34. [34]

      Wu L L, Wang Y D, Xu X, Liu Y L, Lin B Q, Zhang M X, Zhang J L, Wan S, Yang C Y, Tan W H. Aptamer-Based Detection of Circulating Targets for Precision Medicine[J]. Chem. Rev., 2021,121(19):12035-12105.

    35. [35]

      Ni S J, Zhuo Z J, Pan Y F, Yu Y Y, Li F F, Liu J, Wang L Y, Wu X Q, Li D, Wan Y Y, Zhang L H, Yang Z J, Zhang B T, Lu A P, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications[J]. ACS Appl. Mater. Interfaces, 2021,13(8):9500-9519.

    36. [36]

      Ellington A D, Szostak J W. In Vitro Selection of RNA Molecules that Bind Specific Ligands[J]. Nature, 1990,346(6287):818-822.

    37. [37]

      Robertson D L, Joyce G F. Selection In Vitro of an RNA Enzyme that Specifically Cleaves Single-Stranded DNA[J]. Nature, 1990,344(6265):467-468.

    38. [38]

      Zhou J H, Rossi J. Aptamers as Targeted Therapeutics: Current Potential and Challenges[J]. Nat. Rev. Drug Discovery, 2017,16(3):181-202.

    39. [39]

      Xie S T, Ai L L, Cui C, Fu T, Cheng X D, Qu F L, Tan W H. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics[J]. ACS Appl. Mater. Interfaces, 2021,13(8):9542-9560.

    40. [40]

      Mallikaratchy P. Evolution of Complex Target SELEX to Identify Aptamers against Mammalian Cell-Surface Antigens[J]. Molecules, 2017,22(2)215.

    41. [41]

      Bai Y F, Feng F, Zhao L, Chen Z Z, Wang H Y, Duan Y L. A Label-Free Fluorescent Sensor for Hg2+ Based on Target-Induced Structure-Switching of G-Quadruplex[J]. Anal. Methods, 2014,6(3):662-665.

    42. [42]

      Bai Y F, Feng F, Zhao L, Chen Z Z, Wang H Y, Duan Y L. A Turn-On Fluorescent Aptasensor for Adenosine Detection Based on Split Aptamers and Graphene Oxide[J]. Analyst, 2014,139(8):1843-1846.

    43. [43]

      Bai Y F, Feng F, Zhao L, Wang C, Wang H Y, Tian M Z, Qin J, Duan Y L, He X X. Aptamer/Thrombin/Aptamer- AuNPs Sandwich Enhanced Surface Plasmon Resonance Sensor for the Detection of Subnanomolar Thrombin[J]. Biosens. Bioelectron., 2013,47:265-270.

    44. [44]

      Bai Y F, Zhang H L, Zhao L, Wang Y Z, Chen X L, Zhai H, Tian M Z, Zhao R R, Wang T, Xu H, Feng F. A Novel Aptasensor Based on HCR and G-Quadruplex DNAzyme for Fluorescence Detection of Carcinoembryonic Antigen[J]. Talanta, 2020,221121451.

    45. [45]

      Bai Y F, Zhao L, Chen Z Z, Wang H Y, Feng F. A Label-Free Fluorescent Sensor for Pb2+ Based on G-Quadruplex and Graphene Oxide[J]. Anal. Methods, 2014,6(20):8120-8123.

    46. [46]

      Bai Y F, Zhao R F, Feng F, He X X. Determination of Lysozyme by Thiol-Terminated Aptamer-Based Surface Plasmon Resonance[J]. Anal. Lett., 2016,50(4):682-689.

    47. [47]

      Dai Y Y, Liu Z C, Bai Y F, Chen Z Z, Qin J, Feng F. A Novel Highly Fluorescent S, N, O Co-doped Carbon Dots for Biosensing and Bioimaging of Copper Ions in Live Cells[J]. RSC Adv., 2018,8(73):42246-42252.

    48. [48]

      Li R, Feng F, Chen Z Z, Bai Y F, Guo F F, Wu F Y, Zhou G. Sensitive Detection of Carcinoembryonic Antigen Using Surface Plasmon Resonance Biosensor with Gold Nanoparticles Signal Amplification[J]. Talanta, 2015,140(1):143-149.

    49. [49]

      Liu H Y, Bai Y F, Qin J, Chen Z Z, Feng F. A Novel Fluorescent Concanavalin a Detection Platform Using an Anti-concanavalin A Aptamer and Graphene Oxide[J]. Anal. Methods, 2017,9(5):744-747.

    50. [50]

      Liu H Y, Bai Y F, Qin J, Wang H Y, Wang Y Z, Chen Z Z, Feng F. Exonuclease Ⅰ Assisted Fluorometric Aptasensor for Adenosine Detection Using 2-AP Modified DNA[J]. Sens. Actuators B, 2018,256:413-419.

    51. [51]

      Zhang Y, Bai Y F, Feng F, Shuang S M. A Graphene Oxide-Based Fluorescent Aptasensor for Alpha-Fetoprotein Detection[J]. Anal. Methods, 2016,8(32):6131-6134.

    52. [52]

      Santos Do Carmo F, Ricci-Junior E, Cerqueira-Coutinho C, Albernaz M S, Bernardes E S, Missailidis S, Santos-Oliveira R. Anti-MUC1 Nano-Aptamers for Triple-Negative Breast Cancer Imaging by Single-Photon Emission Computed Tomography in Inducted Animals: Initial Considerations[J]. Int. J. Nanomed., 2017,12:53-60.

    53. [53]

      Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X, Liang X J. Multifunctional Aptamer-Based Nanoparticles for Targeted Drug Delivery to Circumvent Cancer Resistance[J]. Biomaterials, 2016,91:44-56.

    54. [54]

      Nimjee S M, White R R, Becker R C, Sullenger B A. Aptamers as Therapeutics[J]. Annu. Rev. Pharmacol. Toxicol., 2017,57:61-79.

    55. [55]

      Bagalkot V, Farokhzad O C, Langer R, Jon S. An Aptamer-Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform[J]. Angew. Chem.Int. Ed., 2006,45(48):8149-8152.

    56. [56]

      Bai Y F, Zhang Z Z, Cheng L J, Wang R X, Chen X L, Kong Y F, Feng F, Ahmad N, Li L, Liu X Q. Inhibition of Enhancer of Zeste Homolog 2(EZH2) Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer[J]. J. Bioned. Opt., 2019,294(25):9911-9923.

    57. [57]

      Kang G F, Wang Y Z, Bai Y F, Chen Z Z, Feng F. Surface Plasmon Resonance Based Competitive Immunoassay for Cd2+[J]. RSC Adv., 2017,7(70):44054-44058.

    58. [58]

      Li H, Peng Q S, Yang L Y, Lin Y S, Chen S, Qin Y Y, Li S P, Yu X Y, Zhang L M. High-Performance Dual Combination Therapy for Cancer Treatment with Hybrid Membrane-Camouflaged Mesoporous Silica Gold Nanorods[J]. ACS Appl. Mater. Interfaces, 2020,12(52):57732-57745.

    59. [59]

      Huang Y F, Sefah K, Bamrungsap S, Chang H T, Tan W H. Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods[J]. Langmuir, 2008,24(20):11860-11865.

    60. [60]

      Choi J, Park Y, Choi E B, Kim H O, Kim D J, Hong Y C, Ryu S H, Lee J H, Suh J S, Yang J, Huh Y M, Haam S. Aptamer-Conjugated Gold Nanorod for Photothermal Ablation of Epidermal Growth Factor Receptor-Overexpressed Epithelial Cancer[J]. J. Biomed. Opt., 2014,19(5)051023.

    61. [61]

      Chandrasekaran R, Lee A S W, Yap L W, Jans D A, Wagstaff K M, Cheng W L. Tumor Cell-Specific Photothermal Killing by SELEX-Derived DNA Aptamer-Targeted Gold Nanorods[J]. Nanoscale, 2016,8(1):187-196.

    62. [62]

      Noh Y, Kim M J, Mun H, Jo E J, Lee H, Kim M G. Aptamer-Based Selective KB Cell Killing by the Photothermal Effect of Gold Nanorods[J]. J. Nanopart. Res., 2019,21(6)112.

    63. [63]

      Zheng L R, Zhang B Y, Chu H S, Cheng P, Li H Y, Huang K L, He X Y, Xu W T. Assembly and In Vitro Assessment of a Powerful Combination: Aptamer-Modified Exosomes Combined with Gold Nanorods for Effective Photothermal Therapy[J]. Nanotechnology, 2020,31(48)485101.

    64. [64]

      Wang J, Liang D W, Jin Q Q, Feng J, Tang X J. Bioorthogonal SERS Nanotags as a Precision Theranostic Platform for In Vivo SERS Imaging and Cancer Photothermal Therapy[J]. Bioconjugate Chem., 2020,31(2):182-193.

    65. [65]

      Liang H, Zhou Z W, Luo R J, Sang M M, Liu B W, Sun M J, Qu W, Feng F, Liu W Y. Tumor-Specific Activated Photodynamic Therapy with an Oxidation-Regulated Strategy for Enhancing Anti-tumor Efficacy[J]. Theranostics, 2018,8(18):5059-5071.

    66. [66]

      Lan G X, Ni K Y, Xu Z W, Veroneau S S, Song Y, Lin W B. Nanoscale Metal-Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy[J]. J. Am. Chem. Soc., 2018,140(17):5670-5673.

    67. [67]

      Pan L M, Liu J A, Shi J L. Cancer Cell Nucleus-Targeting Nanocomposites for Advanced Tumor Therapeutics[J]. Chem. Soc. Rev., 2018,47(18):6930-6946.

    68. [68]

      Li X, Lee S, Yoon J. Supramolecular Photosensitizers Rejuvenate Photodynamic Therapy[J]. Chem. Soc. Rev., 2018,47(4):1174-1188.

    69. [69]

      Guo L, Niu G L, Zheng X L, Ge J C, Liu W M, Jia Q Y, Zhang P P, Zhang H Y, Wang P F. Single Near-Infrared Emissive Polymer Nanoparticles as Versatile Phototheranostics[J]. Adv. Sci., 2017,4(10)1700085.

    70. [70]

      Guo L, Ge J C, Liu Q, Jia Q Y, Zhang H Y, Liu W M, Niu G L, Liu S, Gong J R, Hackbarth S, Wang P F. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy[J]. Adv. Healthcare Mater., 2017,6(12)1601431.

    71. [71]

      Zhao S J, Niu G L, Wu F, Yan L, Zhang H Y, Zhao J F, Zeng L T, Lan M H. Lysosome-Targetable Polythiophene Nanoparticles for Two-Photon Excitation Photodynamic Therapy and Deep Tissue Imaging[J]. J. Mater. Chem. B, 2017,5(20):3651-3657.

    72. [72]

      Liu J J, Zhang Y W, Liu W, Zhang K X, Shi J J, Zhang Z Z. Tumor Antigen Mediated Conformational Changes of Nanoplatform for Activated Photodynamic Therapy[J]. Adv. Healthcare Mater., 2019,8(20)1900791.

    73. [73]

      Dai G, Choi C K K, Zhou Y, Bai Q, Xiao Y, Yang C, Choi C H J, Ng D K P. Immobilising Hairpin DNA-Conjugated Distyryl Boron Dipyrromethene on Gold@Polydopamine Core-Shell Nanorods for Microrna Detection and Microrna-Mediated Photodynamic Therapy[J]. Nanoscale, 2021,13(13):6499-6512.

    74. [74]

      Guo Y, Li S, Liu J, Yang G, Sun Z, Wan J. Double Functional Aptamer Switch Probes Based on Gold Nanorods for Intracellular ATP Detection and Targeted Drugs Transportation[J]. Sens. Actuators B, 2016,235(1):655-662.

    75. [75]

      Tsouris V, Joo M K, Kim S H, Kwon I C, Won Y Y. Nano Carriers that Enable Co-delivery of Chemotherapy and RNAi Agents for Treatment of Drug-Resistant Cancers[J]. Biotechnol. Adv., 2014,32(5):1037-1050.

    76. [76]

      Fan W P, Yung B, Huang P, Chen X Y. Nanotechnology for Multimodal Synergistic Cancer Therapy[J]. Chem. Rev., 2017,117(22):13566-13638.

    77. [77]

      Yang X, Li M, Liang J Y, Hou X Y, He X X, Wang K M. NIR-Controlled Treatment of Multidrug-Resistant Tumor Cells by Mesoporous Silica Capsules Containing Gold Nanorods and Doxorubicin[J]. ACS Appl. Mater. Interfaces, 2021,13(13):14894-14910.

    78. [78]

      He T, He J, Younis M R, Blum N T, Lei S, Zhang Y L, Huang P, Lin J. Dual-Stimuli-Responsive Nanotheranostics for Dual-Targeting Photothermal-Enhanced Chemotherapy of Tumor[J]. ACS Appl. Mater. Interfaces, 2021,13(19):22204-22212.

    79. [79]

      Kang H Z, Trondoli A C, Zhu G Z, Chen Y, Chang Y J, Liu H P, Huang Y F, Zhang X L, Tan W H. Near-Infrared Light-Responsive Core-Shell Nanogels for Targeted Drug Delivery[J]. ACS Nano, 2011,5(6):5094-5099.

    80. [80]

      Yang X J, Liu X, Liu Z, Pu F, Ren J S, Qu X G. Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles[J]. Adv. Mater., 2012,24(21):2890-2895.

    81. [81]

      Kim A R, Shin S W, Cho S W, Lee J Y, Kim D I, Um S H. A Light-Driven Anti-Cancer Dual-Therapeutic Cassette Enhances Solid Tumour Regression[J]. Adv. Healthcare Mater., 2013,2(9):1252-1258.

    82. [82]

      Ju E G, Li Z H, Liu Z, Ren J S, Qu X G. Near-Infrared Light-Triggered Drug-Delivery Vehicle for Mitochondria-Targeted Chemo-Photothermal Therapy[J]. ACS Appl. Mater. Interfaces, 2014,6(6):4364-4370.

    83. [83]

      Wang X W, Gao W, Fan H H, Ding D, Lai X F, Zou Y X, Chen L, Chen Z, Tan W H. Simultaneous Tracking of Drug Molecules and Carriers Using Aptamer-Functionalized Fluorescent Superstable Gold Nanorod-Carbon Nanocapsules during Thermo-Chemotherapy[J]. Nanoscale, 2016,8(15):7942-7948.

    84. [84]

      Song L L, Jiang Q, Liu J B, Li N, Liu Q, Dai L R, Gao Y, Liu W L, Liu D S, Ding B Q. DNA Origami/Gold Nanorod Hybrid Nanostructures for the Circumvention of Drug Resistance[J]. Nanoscale, 2017,9(23):7750-7754.

    85. [85]

      Qiu L P, Chen T, Öçsoy I, Yasun E, Wu C C, Zhu G Z, You M X, Han D, Jiang J H, Yu R Q, Tan W H. A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy[J]. Nano Lett., 2015,15(1):457-463.

    86. [86]

      Wang Y T, Wang L, Guo L X, Yan M M, Feng L, Dong S L, Hao J C. Photo-Responsive Magnetic Mesoporous Silica Nanocomposites for Magnetic Targeted Cancer Therapy[J]. New J. Chem., 2019,43(12):4908-4918.

    87. [87]

      Choi J, Kim S Y. Photothermally Enhanced Photodynamic Therapy Based on Glutathione-Responsive Pheophorbide A-Conjugated Gold Nanorod Formulations for Cancer Theranostic Applications[J]. J. Ind. Eng. Chem., 2020,85:66-74.

    88. [88]

      Wang J, Zhu G Z, You M X, Song E, Shukoor M I, Zhang K, Altman M B, Chen Y, Zhu Z, Huang C Z, Tan W H. Assembly of Aptamer Switch Probes and Photosensitizer on Gold Nanorods for Targeted Photothermal and Photodynamic Cancer Therapy[J]. ACS Nano, 2012,6(6):5070-5077.

    89. [89]

      Wang J, You M X, Zhu G Z, Shukoor M I, Chen Z, Zhao Z L, Altman M B, Yuan Q, Zhu Z, Chen Y, Huang C Z, Tan W H. Photosensitizer-Gold Nanorod Composite for Targeted Multimodal Therapy[J]. Small, 2013,9(21):3678-3684.

    90. [90]

      Peng H Y, Le C, Wu J J, Li X F, Zhang H Q, Le X C. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination[J]. ACS Nano, 2020,14(3):2817-2826.

    91. [91]

      Tang W T, Han L, Lu X H, Wang Z R, Liu F S, Li Y, Liu S B, Liu S L, Tian R, Liu J B, Ding B Q. A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy[J]. ACS Appl. Mater. Interfaces, 2021,13(18):20974-20981.

    92. [92]

      Bian W Q, Wang Y K, Pan Z X, Chen N P, Li X J, Wong W L, Liu X J, He Y, Zhang K, Lu Y J. Review of Functionalized Nanomaterials for Photothermal Therapy of Cancers[J]. ACS Appl. Nano Mater., 2021,83(4):11353-11385.

    93. [93]

      Yi Y, Wang H J, Wang X W, Liu Q L, Ye M, Tan W H. A Smart, Photocontrollable Drug Release Nanosystem for Multifunctional Synergistic Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(7):5847-5854.

    94. [94]

      Wang C B, Nie H, Li Y Q, Liu G Y, Wang X, Xing S J, Zhang L P, Chen X, Chen Y, Li Y. The Study of the Relation of DNA Repair Pathway Genes SNPs and the Sensitivity to Radiotherapy and Chemotherapy of NSCLC[J]. Sci. Rep., 2016,6(1)26526.

    95. [95]

      Yang X J, Li X L, Chen H Y, Xu J J. NIR-Activated Spatiotemporally Controllable Nanoagent for Achieving Synergistic Gene-Chemo-Photothermal Therapy in Tumor Ablation[J]. ACS Appl. Bio Mater., 2019,2(7):2994-3001.

    96. [96]

      Chen C M, Yang Z J, Tang X J. Chemical Modifications of Nucleic Acid Drugs and Their Delivery Systems for Gene-Based Therapy[J]. Med. Res. Rev., 2018,38(3):829-869.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(3)
  • Abstract views(1004)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return