Citation: Cong-Lin LIU, Jin-Xiu WU, Hui-Ling JIA, Zhao-Gang LIU, Yan-Hong HU, Xin WANG, Yuan-Hao QI, Zhong-Zhi WANG. Fluorescent Nanomaterial YPO4: Sm3+@YPO4@Polyethylene Glycol: Construction and Fluorescent Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1272-1282. doi: 10.11862/CJIC.2022.128 shu

Fluorescent Nanomaterial YPO4: Sm3+@YPO4@Polyethylene Glycol: Construction and Fluorescent Properties

  • Corresponding author: Jin-Xiu WU, m13674773965@163.com
  • Received Date: 8 December 2021
    Revised Date: 3 April 2022

Figures(14)

  • In this work, a double-layered fluorescent nanomaterial YPO4: Sm3+@YPO4@PEG (PEG=polyethylene glycol) was constructed by using hydrothermal and microwave methods, to improve the hydrophobicity and fluorescence properties of rare-earth phosphates. Firstly, the core-shell nano-luminescent material YPO4: Sm3+@YPO4 was prepared by adjusting the molar ratio of YPO4: Sm3+ and YPO4 to prepare the core-shell structure with various ratios of core diameter and shell thickness, and the optimal molar ratio was obtained. YPO4: Sm3+@YPO4@PEG was prepared with PEG as the coating. The structure, morphology, and fluorescence properties of the product were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Fourier transform infrared spectra, and fluorescence spectra. Finally, the results show that the produced nano-phosphor is a singlephase material with a tetragonal unit cell (YPO4). The product is not affected by the coating; the particles of the material had spherical morphology with a diameter of 60-100 nm, and the thickness of the coating layer was about 10-20 nm. The fluorescence intensity of YPO4: Sm3+@YPO4@PEG with the double-layered core-shell structure was more than six times stronger than that of nano-phosphor YPO4: Sm3+ without the core-shell structure. In conclusion, the double-layered fluorescent nanomaterial has hydrophilicity and biocompatibility, menanwhile enhanced fluorescence intensity of YPO4: Sm3+.
  • 加载中
    1. [1]

      Cybinska J, Lorbeer C, Mudring A V. Ionic liquid Assisted Microwave Synthesis Route towards Color-Tunable Luminescence of Lanthanide-Doped BiPO4[J]. J. Lumin., 2016,170:641-647. doi: 10.1016/j.jlumin.2015.06.051

    2. [2]

      Kumar V, Singh S, Chawla S. Fabrication of Dual Excitation, Dual Emission Nanophosphor with Broad UV and IR Excitation through Simultaneous Doping of Triple Rare Earth Ions Er3+, Yb3+, Eu3+ in GdPO4[J]. Superlattices Microstruct., 2015,79:86-95. doi: 10.1016/j.spmi.2014.12.003

    3. [3]

      Jiang H X, Lv S C. Intense Red Emission and Two-Way Energy Transfer in Sm3+, Eu3+ Co-doped NaLa(WO4)2 Phosphors[J]. Mater. Res. Bull., 2019,11:140-145.

    4. [4]

      WU J X, LI M, CUI S S, LIU Z G, HU Y H, WANG M T. Morphology Control and Luminescence Properties of SrMoO4∶Sm3+, Na+ Red Phosphor[J]. Chinese J. Inorg. Chem., 2017,33(2):219-226.  

    5. [5]

      HOU X F, ZHAO W N, MA J, SUN J Q, LI Y H. Preparation and Luminescence Properties of Eu3+ Doped LaBO3 Phosphor[J]. Chinese J. Inorg. Chem., 2020,36(2):276-282.  

    6. [6]

      Wu C C, Chen K B, Lee C S, Chen T M, Cheng B M. Synthesis and VUV Photoluminescence Characterization of (Y, Gd)(V, P)O4∶Eu3+ as a Cotential Red-Emitting PDP Phosphor[J]. Chem. Mater., 2007,19:3278-3285. doi: 10.1021/cm061042a

    7. [7]

      Giaume D, Poggi M, Casanova D, Mialon G, Lahlil K, Alexandrou A, Gacoin T, Boilot J P. Organic Functionalization of Luminescent Oxide Nanoparticles towards Their Application as Biological Probes[J]. Langmuir, 2008,2411018. doi: 10.1021/la8015468

    8. [8]

      Zhu H L, Yang H, Jin D L, Wang Z K, Gu X Y, Yao X H, Yao K H. Hydrothermal Synthesis and Photoluminescent Properties of YV1-xPxO4∶Eu3+ (x=0-1.0) Nanophosphors[J]. J. Nanopart. Res., 2008,10:1149-1154. doi: 10.1007/s11051-007-9339-y

    9. [9]

      Jang E, Jun S, Chung Y, Pu L. Surface Treatment to Enhance the Quantum Efficiency of Semiconductor Nanocrystals[J]. J. Phys. Chem. B, 2004,108:4597-4600. doi: 10.1021/jp049475t

    10. [10]

      Zhu H L, Zuo D T. Highly Enhanced Photoluminescence from YVO4∶ Eu3+ @YPO4 Core/Shell Heteronanostructures[J]. J. Phys. Chem. C, 2009,113:10402-10406. doi: 10.1021/jp900242j

    11. [11]

      WU J X. Orange-Red Luminescent Materials Doped with Trivalent Samarium Ions and Their Biological Applications. Beijing: University of Science and Technology Beijing, 2020: 102-115

    12. [12]

      Lim M A, Seok S I, Chung W J, Hong S I. Near Infrared Luminescence Properties of Nanohybrid Film Prepared from LaPO4∶Er3+/LaPO4 Core/Shell Nanoparticles and Silica-Based Resin[J]. Opt. Mater., 2008,31:201-205. doi: 10.1016/j.optmat.2008.03.009

    13. [13]

      Hu Y, Li X X, Wang X, Li Y Q, Li T Y, Kang H X, Zhang H W, Yang Y M. Greatly Enhanced Persistent Luminescence of YPO4∶ Sm3+ Phosphors via Tb3+ Incorporation for In Vivo Imaging[J]. Opt. Express, 2020,28:2649-2660. doi: 10.1364/OE.384678

    14. [14]

      Ansari A A, Labis J P, Manthrammel M A. Designing of Luminescent GdPO4∶ Eu@LaPO4@SiO2 Core/Shell Nanorods: Synthesis, Structural and Luminescence Properties[J]. Solid State Sci., 2017,71:117-122. doi: 10.1016/j.solidstatesciences.2017.07.012

    15. [15]

      Bu W B, Hua Z L, Chen H R, Shi J L. Epitaxial Synthesis of Uniform Cerium Phosphate One-Dimensional Nanocable Heterostructures with Improved Luminescence[J]. J. Phys. Chem. B, 2005,109:14461-14464. doi: 10.1021/jp052486h

    16. [16]

      Mai H X, Zhang Y W, Sun L D, Yan C H. Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4: Yb, Er Core and Core/Shell-Structured Nanocrystals[J]. J. Phys. Chem. C, 2007,111:13721-13729. doi: 10.1021/jp073920d

    17. [17]

      Chin P T K, Donega C D M, Bavel S S, Meskers S C J, Sommerdijk N A J M, Janssen R A J. Highly Luminescent CdTe/CdSe Colloidal Heteronanocrystals with Temperature-Dependent Emission Color[J]. J. Am. Chem. Soc., 2007,129:14880-14886. doi: 10.1021/ja0738071

    18. [18]

      Darbandi M, Hoheisel W, Nann T. Silica Coated, Water Dispersible and Photoluminescent Y(V, P)O4∶ Eu3+, Bi3+ Nanophosphors[J]. Nanotechnology, 2006,17:4168-4173. doi: 10.1088/0957-4484/17/16/029

    19. [19]

      Wu J X, Jia H J, Li M, Jia H L, Liu Z G. Infuence of pH on Nano-Phosphor-YPO4: 2%Sm3+ and Luminescent Properties[J]. Appl. Phys. A, 2020,126(87):1-8.

    20. [20]

      Wu J X, Li M, Jia H L, Liu Z G, Jia H J, Wang Z Z. Morphology Formation Mechanism and Fluorescence Properties of Nano-phosphor YPO4∶Sm3+ Excited by Near-Ultraviolet Light[J]. J. Alloys Compd., 2020,821153535. doi: 10.1016/j.jallcom.2019.153535

    21. [21]

      Zareanshahraki F, Asemani H R, Skuza J, Mannari V. Synthesis of Non-isocyanate Polyurethanes and Their Application in Radiation-Curable Aerospace Coatings[J]. Prog. Org. Coat., 2020,138:105394-105395. doi: 10.1016/j.porgcoat.2019.105394

    22. [22]

      Zhou F F, Deng C M, Wang Y, Liu M, Wang L, Wang Y M, Zhang X F. Characterization of Multi-scale Synergistic Toughened Nanostructured YSZ Thermal Barrier Coatings: From Feedstocks to Coatings[J]. J. Eur. Ceram. Soc., 2019,40:1443-1452.

    23. [23]

      LIU W, LI X L, LIU J, HAN X, YAN J H, KANG Z H, LIAN H Z. Influence of Gd3+ Doping on Properties of NaY(MoO4)2∶Eu3+ Phosphors[J]. Acta Chim. Sinica, 2011,13:1565-1569.  

    24. [24]

      Tang A J, Ding P, Song N, Tang S F, Shi L Y, Zhao Y. Silicate Microspheres Modified with YPO4∶Pr3+ Particles: Possessing Light Diffusion and Blue-Light Down-Conversion Properties[J]. Mater. Lett., 2015,161:395-398. doi: 10.1016/j.matlet.2015.08.152

    25. [25]

      Fan Q, Cui X X, Guo H T, Xu Y T, Zhang G W, Peng B. Application of Rare Earth-Doped Nanoparticles in Biological Imaging and Tumor Treatment[J]. J. Biomater. Appl., 2020,35:237-263. doi: 10.1177/0885328220924540

    26. [26]

      Pavitra E, Raju G S R, Yu J S. Solvent Interface Effect on the Size and Crystalline Nature of the GdPO4∶Eu3+ Nanorods[J]. Mater. Lett., 2015,156:173-176. doi: 10.1016/j.matlet.2015.05.015

    27. [27]

      Ding M, Zhang M, Lu C. Yb3+/Tm3+/Ho3+ Tri-doped YPO4 Submicroplates: A Promising Optical Thermometer Operating in the First Biological Window[J]. Mater. Lett., 2017,209:52-55. doi: 10.1016/j.matlet.2017.07.113

    28. [28]

      Hachani S, Guerbous L. Synthesis, Luminescence, and Energy Transfer Properties of YPO4: Gd3+, Eu3+ and YP3O9∶Sm3+, Eu3+ Phosphors[J]. J. Fluoresc., 2019,29:665-672. doi: 10.1007/s10895-019-02377-1

    29. [29]

      Tabesh E, Salimijazi H R, Kharaziha M, Mahmoudi M, Hejazi M. Development of an In-Situ Chitosan-Coppernanoparticle Coating by Electrophoretic Deposition[J]. Surf. Coat. Technol., 2019,364:239-247. doi: 10.1016/j.surfcoat.2019.02.040

    30. [30]

      Li Z L, Li Z, Chen L, Hu Y, Hu S S, Miao Z H, Sun Y, Besenbacher F, Yu M. Polyethylene Glycol-Modified Cobalt Sulfide Nanosheets for High-Performance Photothermal Conversion and Photoacoustic/Magnetic Resonance Imaging[J]. Nano Res., 2018,11:2436-2449. doi: 10.1007/s12274-017-1865-z

    31. [31]

      Yadav L D S. Organic Spectroscopy. Dordrecht: Springer Netherlands, 2005: 53-101

    32. [32]

      Ji Y, Li Y M, Seo J G, Jang T, Knowles J C, Song S H, Lee J H. Biological Potential of Polyethylene Glycol (PEG)-Functionalized Graphene Quantum Dotsin In Vitro Neural Stem/Progenitor Cells[J]. Nanomaterials-Basel., 2021,11:1446-1453. doi: 10.3390/nano11061446

    33. [33]

      ZHU J J, LUO L H, DU P, XUE J P. Preparation and Optical Properties of Eu3+ Doped Ca2KZn2(VO4)3 Yellow Phosphors for Full Spectrum White Light Emitting Diodes[J]. Chinese Inorg. Chem., 2022,38(2):244-252.  

    34. [34]

      Ansari A A. Role of Surface Modification on Physicochemical Properties of LuminescentYPO4∶Tb Nanorods[J]. Colloids Surf. A, 2017,529:286-291. doi: 10.1016/j.colsurfa.2017.05.028

    35. [35]

      Zhang Q, Chen B, Wu K, Nan B F, Lu M P, Lu M G. PEG-Filled Kapok Fiber/Sodium Alginate Aerogel Loaded Phase Change Composite Material with High Thermal Conductivity and Excellent Shape Stability. Compos[J]. Part. A Appl. Sci. Manuf., 2021,143106279. doi: 10.1016/j.compositesa.2021.106279

    36. [36]

      Shi H J, Mao H Q, Zhu L. Tunable Luminescence of SrLaMgTaO6∶ Sm3+ Phosphors Due to Energy Transfer from TaO6 Group to Sm3+ Ion[J]. J. Mater. Sci. Mater. Electron., 2018,29:10885-10889. doi: 10.1007/s10854-018-9164-3

    37. [37]

      Hu F F, Wei X T, Qin Y G, Jiang S, Li X Y, Zhou S S, Chen Y H, Duan C K, Yin M. Yb3+/Tb3+ Co-doped GdPO4 Transparent Magnetic Glass-Ceramics for Spectral Conversion[J]. J. Alloys Compd., 2016,674:162-167. doi: 10.1016/j.jallcom.2016.03.040

    38. [38]

      Pan G H, Song H W, Bai X, Fan L B, Yu H Q, Dai Q L, Dong B, Qin R F, Li S W, Lu S Z, Ren X G, Zhao H F. Highly Luminescent YVO4∶Eu3+ Nanocrystals Coating on Wirelike Y(OH)3∶Eu3+ and Y2O3∶Eu3+ Microcrystals by Chemical Corrosio[J]. J. Phys. Chem. C, 2007,111:12472-12477. doi: 10.1021/jp067060x

    39. [39]

      Wang Z L, Quan Z W, Jia P Y, Lin C K, Luo Y, Chen Y, Fang J, Zhou W, O'Connor C J, Lin J. A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3∶Tb3+, and CeF3∶Tb3+/LaF3 (Core/Shell) Nanoparticles[J]. Chem. Mater., 2006,18:2030-2037. doi: 10.1021/cm052360x

    40. [40]

      Ningthoujama R S, Singh L R, Sudarsana V, Singh S D. Energy Transfer Process and Optimum Emission Studies in Luminescence of Core-Shell Nanoparticles: YVO4∶Eu-YVO4 and Surface State Analysis[J]. J. Alloys Compd., 2009,484:782-789. doi: 10.1016/j.jallcom.2009.05.044

    41. [41]

      Pramanik A, Gates K, Patibandla S, Davis D, Begum S, Iftekhar R, Alamgir S, Paige S, Porter M M, Ray P C. Water-Soluble and Bright Luminescent Cesium-Lead-Bromide Perovskite Quantum Dot-Polymer Composites for Tumor-Derived Exosome Imaging[J]. ACS Appl. Bio Mater., 2019,2(12):5872-5879. doi: 10.1021/acsabm.9b00837

    42. [42]

      Zou J F, Zhu Q, Li X D, Sun X D, Li J G. Controlled Hydrothermal Processing of Multiform (Y0.95Eu 0.05)PO4 Crystals and Comparison of Photoluminescence[J]. J. Alloys Compd., 2021,870159380. doi: 10.1016/j.jallcom.2021.159380

    43. [43]

      Xiong F B, Xu F X, Lin H F, Wang Y P, Ma E, Zhu W Z. Synthesis and Luminescent Properties of Novel Thermal-Stable Orangish-Red-Emitting LnNbO4∶Sm3+ (Ln=La, Y) Phosphors[J]. Appl. Phys. A, 2020,126(908):1-8.

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(0)
  • Abstract views(540)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return