Citation: Yu MA, Guang-Qi HU, Wei-Hao YE, Bao-Yan GUO, Xiao-Kai XU, Chao-Fan HU, Jian-Le ZHUANG, Ying-Liang LIU. Synthesis, Application, and Mechanism of Barium Sulfate Particle Size Modifiers C-N-CDs[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1317-1326. doi: 10.11862/CJIC.2022.127 shu

Synthesis, Application, and Mechanism of Barium Sulfate Particle Size Modifiers C-N-CDs

  • Corresponding author: Ying-Liang LIU, tliuyl@scau.edu.cn
  • Received Date: 29 January 2022
    Revised Date: 24 April 2022

Figures(10)

  • In this paper, carboxyl and amino-modified carbon dots (C-N-CDs) were prepared with citric acid and ethylenediamine by hydrothermal reaction, which have excellent particle size regulation of barium sulfate: the average particle size of BaSO4 particles prepared by the precipitation method can be reduced to 45.3 nm, which is smaller than the average particle size of BaSO4 particles prepared by traditional complexing agent ethylenediaminetetraace-tic acid (EDTA) regulation under the same conditions (73.7 nm). The as-prepared nano BaSO4 sample showed an excellent nano-toughening effect when added to polyvinyl alcohol (PVA) films. The chemical properties, surface electrical properties, and spatial site resistance of C-N-CDs were found to be important factors influencing the size of BaSO4 particles.
  • 加载中
    1. [1]

      SHANG F Y, HU F, SU X H. Present Status and Development Prospect of Precipitated Barium Sulfate Production in China[J]. Inorganic Chemicals Industry, 2015,47(1):1-4.  

    2. [2]

      MAN R L, LIU Y, YU J G. Preparation of Ultrafine Active Barite[J]. Journal of Central South University (Science and Technology), 2000,31(2):145-148.  

    3. [3]

      ZOU Y J, SHENG Y, ZHU D Q. Influencing Factors of Inorganic Rigid Particles Toughening Polypropylene[J]. Chinese Journal of Applied Chemistry, 2013,30(3):245-251.  

    4. [4]

      CHEN H Z, SUN Z L, ZHANG Y, ZHANG J. Research Progress in Modification and Application of Nano-sized Barium Sulfate[J]. Inorganic Chemicals Industry, 2019,51(11):6-12. doi: 10.11962/1006-4990.2019-0018

    5. [5]

      Zhang X Y, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y H, Wang P, Zhang T Q, Zhao Y, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W, Rogach A L. Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes[J]. ACS Nano, 2013,7(12):11234-11241. doi: 10.1021/nn405017q

    6. [6]

      Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization[J]. Adv. Mater., 2018,30(1)1704740. doi: 10.1002/adma.201704740

    7. [7]

      Hutton G A M, Reuillard B, Martindale B C M, Caputo C A, Lockwood C W J, Butt J N, Reisner E. Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes[J]. J. Am.Chem. Soc., 2016,138(51):16722-16730. doi: 10.1021/jacs.6b10146

    8. [8]

      Yu H J, Shi R, Zhao Y F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis[J]. Adv. Mater., 2016,28(43):9454-9477. doi: 10.1002/adma.201602581

    9. [9]

      Li H T, Sun C H, Ali M, Zhou F L, Zhang X Y, MacFarlane D R. Sulfated Carbon Quantum Dots as Efficient Visible-Light Switchable Acid Catalysts for Room-Temperature Ring-Opening Reactions[J]. Angew. Chem. Int. Ed., 2015,54(29):8420-8424. doi: 10.1002/anie.201501698

    10. [10]

      Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications[J]. Small, 2015,11(14):1620-1636. doi: 10.1002/smll.201402648

    11. [11]

      Xu X K, Li Y D, Hu G Q, Mo L Q, Zheng M T, Lei B F, Zhang X J, Hu C F, Zhuang J L, Liu Y L. Surface Functional Carbon Dots: Chemical Engineering Applications Beyond Optical Properties[J]. J. Mater. Chem. C, 2020,8:16282-16294. doi: 10.1039/D0TC03805A

    12. [12]

      Zhu J M, Li X H, Zhang Y Y, Wang J, Wei B Q. Graphene-Enhanced Nanomaterials for Wall Painting Protection[J]. Adv. Funct. Mater., 2018,28(44)1803872. doi: 10.1002/adfm.201803872

    13. [13]

      He P, Sun J, Tian S Y, Ding S J, Ding G Q, Xie X M, Jiang M H. Processable Aqueous Dispersions of Graphene Stabilized by Graphene Quantum Dots[J]. Chem. Mater., 2015,27(1):218-226. doi: 10.1021/cm503782p

    14. [14]

      Hao J, Li L Y, Zhao W W, Wu X Q, Xiao Y Y, Zhang H F, Tang N, Wang X C. Synthesis and Application of CCQDs as a Novel Type of Environmentally Friendly Scale Inhibitor[J]. ACS Appl. Mater. Interfaces, 2019,11(9):9277-9282. doi: 10.1021/acsami.8b19015

    15. [15]

      Guo C S, Qian X M, Tian F, Li N, Wang W, Xu Z W, Zhang S N. Amino-Rich Carbon Quantum Dots Ultrathin Nanofiltration Membranes by Double"One-Step"Methods: Breaking through Trade-Off Among Separation, Permeation and Stability[J]. Chem. Eng. J., 2021,404127144. doi: 10.1016/j.cej.2020.127144

    16. [16]

      Hazarika D, Karak N. Nanocomposite of Waterborne Hyperbranched Polyester and Clay@Carbon Dot as a Robust Photocatalyst for Environmental Remediation[J]. Appl. Surf. Sci., 2019,498143832. doi: 10.1016/j.apsusc.2019.143832

    17. [17]

      Lauth V, Loretz B, Lehr C, Mass M, Rezwan K. Self-Assembly and Shape Control of Hybrid Nanocarriers Based on Calcium Carbonate and Carbon Nanodots[J]. Chem. Mater., 2016,28(11):3796-3803. doi: 10.1021/acs.chemmater.6b00769

    18. [18]

      ZHANG D Q, JIA Z G, LUO G C, WANG H Z, LI C Y, WU L, CHEN Q H. CDs-Induced Polymorphous CaCO3 Mineralization and Formation Mechanism[J]. Chinese J. Inorg. Chem., 2020,36(8):1557-1566.  

    19. [19]

      Cui M J, Ren S M, Xue Q J, Zhao H C, Wang L P. Carbon Dots as New Eco-friendly and Effective Corrosion Inhibitor[J]. J. Alloys Compd., 2017,726:680-692. doi: 10.1016/j.jallcom.2017.08.027

    20. [20]

      Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P J G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. Carbon Dots for Multiphoton Bioimaging[J]. J. Am. Chem. Soc., 2007,129(37):11318-11319. doi: 10.1021/ja073527l

    21. [21]

      Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging[J]. Angew. Chem. Int. Ed., 2015,54(18):5360-5363. doi: 10.1002/anie.201501193

    22. [22]

      Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging[J]. Angew. Chem. Int. Ed., 2013,52(14):3953-3957. doi: 10.1002/anie.201300519

    23. [23]

      Miraftab R, Ramezanzadeh B, Bahlakeh G, Mahdavian M. An Advanced Approach for Fabricating a Reduced Graphene Oxide-AZO Dye/Polyurethane Composite with Enhanced Ultraviolet (UV) Shielding Properties: Experimental and First-Principles QM Modeling[J]. Chem. Eng. J., 2017,321:159-174. doi: 10.1016/j.cej.2017.03.124

    24. [24]

      Wu S S, Li W, Zhou W, Zhan Y, Hu C F, Zhuang J L, Zhang H R, Zhang X J, Lei B F, Liu Y L. Large-Scale One-Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material[J]. Adv. Optical Mater., 2018,6(7)1701150. doi: 10.1002/adom.201701150

  • 加载中
    1. [1]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(4)
  • Abstract views(985)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return