Citation: Xia-Xia FAN, Zhi- Xiang GAO, Wen-Shan QU, Cui-Feng TIAN, Jian-Gang LI, Wei LI, Li-Juan DONG, Yun-Long SHI. Synthesis and Luminescence Properties of Li4SrCa(SiO4)2∶Eu3+ Red Phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1016-1022. doi: 10.11862/CJIC.2022.123 shu

Synthesis and Luminescence Properties of Li4SrCa(SiO4)2∶Eu3+ Red Phosphor

Figures(8)

  • Li4SrCa(SiO4)2∶Eu3+ red phosphor was synthesized by a high-temperature solid-phase method using silicate as a host material. The phase, morphology, and luminescence properties of the powder were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and fluorescence spectroscopy. The results showed that the crystal structure does not change after the addition of the europium ion. Under the light excitation at 393 nm, the emission peak intensity of the sample was the strongest at 693 nm. With 693 nm as the monitoring wavelength, the main excitation peaks were 361 nm (7F05D4), 375 nm (7F05G3), 413 nm (7F05D3), 393 nm (7F05L6), and 464 nm (7F05D2), which suggests that the phosphor has good absorption to near-ultraviolet and blue light, and has the potential to produce white light-emitting diodes. The effect of Eu3+ doped concentration on the luminescence intensity of phosphor was studied by emission spectroscopy. When the doped concentration of europi- um ion (molar fraction, x) was equal to 0.10, the emission intensity of the sample was the strongest, and the sample emitted red light. The mechanism of concentration quenching was analyzed by the relationship between Dexter strength and concentration.
  • 加载中
    1. [1]

      Lin C C, Liu R S. Advances in Phosphors for Light-Emitting Diodes[J]. J. Phys. Chem. Lett., 2011,2(11):1268-1277. doi: 10.1021/jz2002452

    2. [2]

      Mckittrick J, Shea-Rohwer L E. Review: Down Conversion Materials for Solid-State Lighting[J]. J. Am. Ceram. Soc., 2014,97(5):1327-1352. doi: 10.1111/jace.12943

    3. [3]

      Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y. Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and Properties[J]. Mater. Sci. Eng. R, 2010,71(1):1-34. doi: 10.1016/j.mser.2010.07.001

    4. [4]

      Bachmann V, Ronda C, Meijerink A. Temperature Quenching of Yellow Ce3+ Luminescence in YAG: Ce[J]. Chem. Mater., 2009,21(10):2077-2084. doi: 10.1021/cm8030768

    5. [5]

      Song X F, He H, Fu R L, Wang D L, Zhao X R, Pan Z W. Photoluminescent Properties of SrSi2O2N2: Eu2+ Phosphor: Concentration Related Quenching and Red Shift Behaviour[J]. J. Phys. D: Appl. Phys., 2009,42(6)065409. doi: 10.1088/0022-3727/42/6/065409

    6. [6]

      Kim K B, Kim Y I, Chun H G, Cho T Y, Jung J S, Kang J G. Structural and Optical Properties of BaMgAl10O17: Eu2+ Phosphor[J]. Chem. Mater., 2002,14(12):5045-5052. doi: 10.1021/cm020592f

    7. [7]

      Brgoch J, DenBaars S P, Seshadri R. Proxies from Ab Initio Calculations for Screening Efficient Ce3+ Phosphor Hosts[J]. J. Phys. Chem. C, 2013,117(35):17955-17959. doi: 10.1021/jp405858e

    8. [8]

      George N C, Birkel A, Brgoch J, Hong B C, Mikhailovsky A A, Page K, Llobet A, Seshadri R. Average and Local Structural Origins of the Optical Properties of the Nitride Phosphor La3-xCexSi6N11 (0 < x ≤ 3)[J]. Inorg. Chem., 2013,52(23):13730-13741. doi: 10.1021/ic402318k

    9. [9]

      Schmiechen S, Schneider H, Wagatha P, Hecht C, Schmidt P J, Schnick W. Toward New Phosphors for Application in Illumination-Grade White pc-LEDs: The Nitridomagnesosilicates Ca[Mg3SiN4]: Ce3+, Sr[Mg3SiN4]: Eu2+, and Eu[Mg3SiN4][J]. Chem. Mater., 2014,26(8):2712-2719. doi: 10.1021/cm500610v

    10. [10]

      Akella A, Keszler D A. The New Orthosilicate Li4SrCa(SiO4)2: Structure and Eu2+ Luminescence[J]. Inorg. Chem., 1995,34(6):1308-1310. doi: 10.1021/ic00110a005

    11. [11]

      Zhang J L, Zhang W L, Qiu Z X, Zhou W L, Yu L P, Li Z Q, Lian S X. Li4SrCa(SiO4)2: Ce3+, a Highly Efficient Near-UV and Blue Emitting ortho-Silicate Phosphor[J]. J. Alloys Compd., 2015,646:315-320. doi: 10.1016/j.jallcom.2015.05.280

    12. [12]

      Pekgozlu I, Erdogmus E, Yilmaz M. Synthesis and Photoluminescence Properties of Li4SrCa(SiO4)2: M (M: Pb2+ and Bi3+)[J]. J. Lumin., 2015,161:160-163. doi: 10.1016/j.jlumin.2015.01.009

    13. [13]

      Zhang J L, Zhang W L, He Y N, Zhou W L, Yu L P, Lian S X, Li Z Q, Gong M L. Site-Occupancy on the Luminescence Properties of a Single-Phase Li4SrCa(SiO4)2: Eu2+ Phosphor[J]. Ceram. Int., 2014,40(7):9831-9834. doi: 10.1016/j.ceramint.2014.02.073

    14. [14]

      Zhang X M, Li W L, Seo H J. Luminescence and Energy Transfer in Eu2+, Mn2+ Co-doped Li4SrCa(SiO4)2 for White Light-Emitting-Diodes[J]. Phys. Lett. A, 2009,373(38):3486-3489. doi: 10.1016/j.physleta.2009.07.052

    15. [15]

      Jin Y, Wang Y, Wang Y P. Tuning Luminescence and Excellent Thermal Stability of Gd4.67Si3O13: Bi3+ to Eu3+ with Energy Transfer from Bi3+ to Eu3+[J]. Ceram. Int., 2020,46(14):22927-22933. doi: 10.1016/j.ceramint.2020.06.066

    16. [16]

      Li W, Wang J, Zhang H R, Liu Y L, Lei B F, Zhuang J L, Cui J H, Peng M Y, Zhu Y. Tunable Emission Color and Mixed Valence State via the Modified Activator Site in the AlN-Doped Sr3SiO5: Eu Phosphor[J]. RSC Adv., 2016,6(39):33076-33082. doi: 10.1039/C6RA04387A

    17. [17]

      Singh S. Enhancement and Luminescence Properties of Eu3+, Sm3+ Co-doped KMgPO4 Phosphor with Variable Concentration of Eu3+ for w-LEDs[J]. Bull. Mater. Sci., 2021,44(1)22. doi: 10.1007/s12034-020-02314-0

    18. [18]

      Kang J S, Jeong Y K, Kang J G, Zhao L Y, Sohn Y, Pradhan D, Leung K T. Observation of Mediated Cascade Energy Transfer in Europium-Doped ZnO Nanowalls by 1, 10-Phenanthroline[J]. J. Phys. Chem. C, 2015,119(4):2142-2147. doi: 10.1021/jp5090795

    19. [19]

      Bezrkovnyi O S, Vorokhta M, Malecka M, Mista W, Kepinski L. NAP-XPS Study of Eu3+→Eu2+ and Ce4→Ce3+ Reduction in Au/Ce0.80Eu0.20O2 Catalyst[J]. Catal. Commun., 2020,135105875. doi: 10.1016/j.catcom.2019.105875

    20. [20]

      Blasse G. On the Eu3+ Fluorescence of Mixed Metal Oxides. Ⅳ. The Photoluminescent Efficiency of Eu3+-Activated Oxides[J]. J. Chem. Phys., 1966,45(7):2356-2360. doi: 10.1063/1.1727946

    21. [21]

      Dexter D L, Schulman J H. Theory of Concentration Quenching in Inorganic Phosphors[J]. J. Chem. Phys., 1954,22(6):1063-1070. doi: 10.1063/1.1740265

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

Metrics
  • PDF Downloads(5)
  • Abstract views(645)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return