Citation: Cong LIAO, Chuang YU, Lin-Feng PENG, Li-Ping LI, Shi-Jie CHENG, Jia XIE. Li7P3S11 Electrolyte: Synthesis, Conduction, and Application[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 977-992. doi: 10.11862/CJIC.2022.122 shu

Li7P3S11 Electrolyte: Synthesis, Conduction, and Application

Figures(8)

  • Exploring solid electrolytes with high ion conductivity, good chemical/electrochemical stability, and excellent electrode compatibility is crucial for developing solid-state batteries. Compared with other solid electrolytes, sulfide solid electrolytes possess the advantages of high ionic conductivity and good mechanical processing performance and are expected to be one of the most promising practical solid electrolytes. Among sulfide electrolytes, Li7P3S11 is highly attractive due to its high ionic conductivity and lower raw material costs. In this review, the structure, Li+ conduction mechanism, and synthetic routes of Li7P3S11 electrolyte are described firstly. Then, the current modification strategies utilized to improve the ionic conductivity, air/water stability, and electrochemical stability are recapped, and the applications of Li7P3S11 electrolyte both in all-solid-state lithium-sulfur batteries and all-solid-state batteries with commercial cathode materials are systematically summarized. Finally, the challenges and the development trend for Li7P3S11 electrolyte and its applications are provided.
  • 加载中
    1. [1]

      Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001,414(6861):359-367. doi: 10.1038/35104644

    2. [2]

      Yu C, Van Eijck L, Ganapathy S, Wagemaker M. Synthesis, Structure and Electrochemical Performance of the Argyrodite Li6PS5Cl Solid Electrolyte for Li-Ion Solid State Batteries[J]. Electrochim. Acta, 2016,215:93-99. doi: 10.1016/j.electacta.2016.08.081

    3. [3]

      Yu C, Li Y, Li W H, Adair K R, Zhao F P, Willans M, Liang J W, Zhao Y, Wang C H, Deng S X, Li R Y, Huang H, Lu S G, Sham T K, Huang Y N, Sun X L. Enabling Ultrafast Ionic Conductivity in Br-Based Lithium Argyrodite Electrolytes for Solid-State Batteries with Different Anodes[J]. Energy Storage Mater., 2020,30:238-249. doi: 10.1016/j.ensm.2020.04.014

    4. [4]

      Yu S C, Mertens A, Tempel H, Schierholz R, Kungl H, Eichel R A. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility[J]. ACS Appl. Mater. Interfaces, 2018,10(26):22264-22277. doi: 10.1021/acsami.8b05902

    5. [5]

      Peng L F, Ren H T, Zhang J Z, Chen S Q, Yu C, Miao X F, Zhang Z Q, He Z Y, Yu M, Zhang L, Cheng S J, Xie J. LiNbO3-Coated LiNi0.7Co0.1Mn0.2O2 and Chlorine-Rich Argyrodite Enabling High-Performance Solid-State Batteries under Difffferent Temperatures[J]. Energy Storage Mater., 2021,43:53-61. doi: 10.1016/j.ensm.2021.08.028

    6. [6]

      Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, De Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y L, Van Der Maas E, Kelder E M, Ganapathy S, Wagemaker M. Clarifying the Relationship between Redox Activity and Electrochemical Stability in Solid Electrolytes[J]. Nat. Mater., 2020,19(4):428-435. doi: 10.1038/s41563-019-0576-0

    7. [7]

      SUN Q S, ZHU C J, XIE J, CAO G S, ZHAO X B, ZHENG D, JIN Y, WANG K Y, GUO Y B, TU F F. Preparation and Electrochemical Performance of Ceramic/Polymer-Based Composite Electrolytes[J]. Chinese J. Inorg. Chem., 2019,35(5):865-870.  

    8. [8]

      Gong Y X, Wang J J. Solid-State Batteries: From Fundamental Interface Characterization to Realize Sustainable Promise[J]. Rare Met., 2020,39(7):743-744. doi: 10.1007/s12598-020-01429-x

    9. [9]

      TU F F, XIE J, GUO F, ZHAO X B, WANG Y P, CHEN D, XIANG J Y, CHEN J. Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte[J]. Chinese J. Inorg. Chem., 2020,36(8):1515-1523.  

    10. [10]

      Xu R C, Han F D, Ji X, Fan X L, Tu J P, Wang C S. Interface Engineering of Sulfide Electrolytes for All-Solid-State Lithium Batteries[J]. Nano Energy, 2018,53:958-966. doi: 10.1016/j.nanoen.2018.09.061

    11. [11]

      Reddy M V, Julien C M, Mauger A, Zaghib K. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review[J]. Nanomaterials, 2020,10(8)1606. doi: 10.3390/nano10081606

    12. [12]

      Jiang Z Y, Wang S Q, Chen X Z, Yang W L, Yao X, Hu X C, Han Q Y, Wang H H. Tape-Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium-Metal Batteries[J]. Adv. Mater., 2020,32(6)1906221. doi: 10.1002/adma.201906221

    13. [13]

      Liu X Z, Ding L, Liu Y Z, Xiong L P, Chen J, Luo X L. Room-Temperature Ionic Conductivity of Ba, Y, Al Co-Doped Li7La3Zr2O12 Solid Electrolyte after Sintering[J]. Rare Met., 2020,40(8):2301-2306.

    14. [14]

      ZHOU D F, GE Z M, GUO W, MENG J. Synthesis, Characterization and Electrical Properties of Solid State Electrolyte Materials La2-xCaxMo1.7W0.3O9-δ(0≤x≤0.2)[J]. Chinese J. Inorg. Chem., 2007,23(1):81-85. doi: 10.3321/j.issn:1001-4861.2007.01.013

    15. [15]

      Adeli P, Bazak J D, Park K H, Kochetkov I, Huq A, Goward G R, Nazar L F. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution[J]. Angew. Chem. Int. Ed., 2019,58(26):8681-8686. doi: 10.1002/anie.201814222

    16. [16]

      Chen S J, Xie D J, Liu G Z, Mwizerwa J P, Zhang Q, Zhao Y R, Xu X X, Yao X Y. Sulfide Solid Electrolytes for All-Solid-State Lithium Batteries: Structure, Conductivity, Stability and Application[J]. Energy Storage Mater., 2018,14:58-74. doi: 10.1016/j.ensm.2018.02.020

    17. [17]

      Zhu G L, Zhao C Z, Yuan H, Zhao B C, Hou L P, Cheng X B, Nan H X, Lu Y, Zhang J, Huang J Q, Liu Q B, He C X, Zhang Q. Interfacial Redox Behaviors of Sulfide Electrolytes in Fast-Charging All-Solid-State Lithium Metal Batteries[J]. Energy Storage Mater., 2020,31:267-273. doi: 10.1016/j.ensm.2020.05.017

    18. [18]

      Quartarone E, Mustarelli P. Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives[J]. Chem. Soc. Rev., 2011,40(5):2525-2540. doi: 10.1039/c0cs00081g

    19. [19]

      Xu X Y, Hou G M, Nie X K, Ai Q, Liu Y, Feng J K, Zhang L, Si P C, Guo S R, Ci L J. Li7P3S11/Poly(ethylene oxide) Hybrid Solid Electrolytes with Excellent Interfacial Compatibility for All-Solid-State Batteries[J]. J. Power Sources, 2018,400:212-217. doi: 10.1016/j.jpowsour.2018.08.016

    20. [20]

      Li W, Wu G T, Araújo C M, Scheicher R H, Blomqvist A, Ahuja R, Xiong Z T, Feng Y P, Chen P. Li+ Ion Conductivity and Diffusion Mechanism in α-Li3N and β-Li3N[J]. Energy Environ. Sci., 2010,3(10):1524-1530. doi: 10.1039/c0ee00052c

    21. [21]

      Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries[J]. Adv. Mater., 2018,30(44)1803075. doi: 10.1002/adma.201803075

    22. [22]

      Huang B X, Yao X Y, Huang Z, Guan Y B, Jin Y, Xu X X. Li3PO4-Doped Li7P3S11 Glass-Ceramic Electrolytes with Enhanced Lithium Ion Conductivities and Application in All-Solid-State Batteries[J]. J. Power Sources, 2015,284:206-211. doi: 10.1016/j.jpowsour.2015.02.160

    23. [23]

      Ahmad N, Zhou L, Faheem M, Tufail M K, Yang L, Chen R J, Zhou Y D, Yang W. Enhanced Air Stability and High Li-Ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass-Ceramic Electrolyte for All-Solid-State Lithium-Sulfur Batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(19):21548-21558. doi: 10.1021/acsami.0c00393

    24. [24]

      Xu R C, Xia X H, Yao Z J, Wang X L, Gu C D, Tu J P. Preparation of Li7P3S11 Glass-Ceramic Electrolyte by Dissolution-Evaporation Method for All-Solid-State Lithium Ion Batteries[J]. Electrochim. Acta, 2016,219:235-240. doi: 10.1016/j.electacta.2016.09.155

    25. [25]

      Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A Lithium Superionic Conductor[J]. Nat. Mater., 2011,10(9):682-686. doi: 10.1038/nmat3066

    26. [26]

      Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A Sulfide Lithium Super Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries[J]. Energy Environ Sci., 2014,7(2):627-631. doi: 10.1039/C3EE41655K

    27. [27]

      Kizilaslan A, Akbulut H. Assembling All-Solid-State Lithium Sulfur Batteries with Li3N-Protected Anodes[J]. Chem Phys Chem, 2019,84(2):183-189.

    28. [28]

      Yoon D H, Park Y J. Electrochemical Properties of Cathode According to the Type of Sulfide Electrolyte and the Application of Surface Coating[J]. J. Electrochem. Sci. Technol., 2021,12(1):126-136. doi: 10.33961/jecst.2020.01361

    29. [29]

      Tufail M K, Zhou L, Ahmad N, Chen R, Faheem M, Yang L, Yang W. A Novel Air-Stable Li7Sb0.05P2.95S10.5I0.5 Superionic Conductor Glass-Ceramics Electrolyte for All-Solid-State Lithium-Sulfur Batteries[J]. Chem. Eng. J., 2021,407:127-149.

    30. [30]

      Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M. Crystal Structure of a Superionic Conductor, Li7P3S11[J]. Solid State Ionics, 2007,178(15/16/17/18):1163-1167.

    31. [31]

      Kudu O U, Famprikis T, Fleutot B, Braida M D, Le Mercier T, Islam M S, Masquelier C. A Review of Structural Properties and Synthesis Methods of Solid Electrolyte Materials in the Li2S-P2S5 Binary System[J]. J. Power Sources, 2018,407(15):31-43.

    32. [32]

      Onodera Y, Mori K, Otomo T, Sugiyama M, Fukunaga T. Structural Evidence for High Ionic Conductivity of Li7P3S11 Metastable Crystal[J]. J. Phys. Soc. Jpn., 2012,81(4)044802. doi: 10.1143/JPSJ.81.044802

    33. [33]

      Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y, Ceder G. Design Principles for Solid-State Lithium Superionic Conductors[J]. Nat. Mater., 2015,14(10):1026-1031. doi: 10.1038/nmat4369

    34. [34]

      Lepley N D, Holzwarth N A W. Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates[J]. J. Electrochem. Soc., 2012,159(5):A538-A547. doi: 10.1149/2.jes113225

    35. [35]

      Xiong K, Longo R C, Santosh K C, Wang W, Cho K. Behavior of Li Defects in Solid Electrolyte Lithium Thiophosphate Li7P3S11: A First Principles Study[J]. Comput. Mater. Sci., 2014,90:44-49. doi: 10.1016/j.commatsci.2014.03.030

    36. [36]

      Chu I H, Han N, Hy S, Lin Y C, Wang Z B, Xu Z H, Deng Z, Meng Y S, Ong S P. Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study[J]. ACS Appl. Mater. Interfaces, 2016,8(12):7843-7853. doi: 10.1021/acsami.6b00833

    37. [37]

      Minami K, Mizuno F, Hayashi A, Tatsumisago M. Lithium Ion Conductivity of the Li2S-P2S5 Glass-Based Electrolytes Prepared by the Melt Quenching Method[J]. Solid State Ionics, 2007,178(11/12):837-841.

    38. [38]

      Holzwarth N A W, Lepley N D, Du Y A. Computer Modeling of Lithium Phosphate and Thiophosphate Electrolyte Materials[J]. J. Power Sources, 2011,196(16):6870-6876. doi: 10.1016/j.jpowsour.2010.08.042

    39. [39]

      Minami K, Hayashi A, Tatsumisago M. Preparation and Characterization of Superionic Conducting Li7P3S11 Crystal from Glassy Liquids[J]. J. Ceram. Soc. Jpn., 2010,118(1376):305-308. doi: 10.2109/jcersj2.118.305

    40. [40]

      Hayashi A, Minami K, Ujiie S, Tatsumisago M. Preparation and Ionic Conductivity of Li7P3S11-z Glass-Ceramic Electrolytes[J]. J. Non-Cryst. Solids, 2010,356(44/45/46/47/48/49):2670-2673.

    41. [41]

      Seino Y, Nakagawa M, Senga M, Higuchi H, Takada K, Sasaki T. Analysis of the Structure and Degree of Crystallization of 70Li2S-30P2S5 Glass Ceramic[J]. J. Mater. Chem. A, 2015,3(6):2756-2761. doi: 10.1039/C4TA04332D

    42. [42]

      Minami K, Hayashi A, Tatsumisago M. Crystallization Process for Superionic Li7P3S11 Glass-Ceramic Electrolytes[J]. J. Am. Ceram. Soc., 2011,94(6):1779-1783. doi: 10.1111/j.1551-2916.2010.04335.x

    43. [43]

      Busche M R, Weber D A, Schneider Y, Dietrich C, Wenzel S, Leichtweiss T, Schroeder D, Zhang W, Weigand H, Walter D, Sedlmaier S J, Houtarde D, Nazar L F, Janek J. In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup[J]. Chem. Mater., 2016,28(17):6152-6165. doi: 10.1021/acs.chemmater.6b02163

    44. [44]

      Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. High Lithium Ion Conducting Glass-Ceramics in the System Li2S-P2S5[J]. Solid State Ionics, 2006,177(26/27/28/29/30/31/32):2721-2725.

    45. [45]

      Miura A, Rosero-Navarro N C, Sakuda A, Tadanaga K, Phuc N H H, Matsuda A, Machida N, Hayashi A, Tatsumisago M. Liquid-Phase Syntheses of Sulfide Electrolytes for All-Solid-State Lithium Battery[J]. Nat. Rev. Chem., 2019,3(3):189-198. doi: 10.1038/s41570-019-0078-2

    46. [46]

      Wang Y X, Lu D P, Bowden M, El Khoury P Z, Han K S, Deng Z D, Xiao J, Zhang J G, Liu J. Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis[J]. Chem. Mater., 2018,30(3):990-997. doi: 10.1021/acs.chemmater.7b04842

    47. [47]

      Ito S, Nakakita M, Aihara Y, Uehara T, Machida N. A Synthesis of Crystalline Li7P3S11 Solid Electrolyte from 1, 2-Dimethoxyethane Solvent[J]. J. Power Sources, 2014,271(20):342-345.

    48. [48]

      Calpa M, Rosero-Navarro N C, Miura A, Tadanaga K. Instantaneous Preparation of High Lithium-Ion Conducting Sulfide Solid Electrolyte Li7P3S11 by a Liquid Phase Process[J]. RSC Adv., 2017,7(73):46499-46504. doi: 10.1039/C7RA09081A

    49. [49]

      Suto K, Bonnick P, Nagai E, Niitani K, Arthur T S, Muldoon J. Microwave-Aided Synthesis of Lithium Thiophosphate Solid Electrolyte[J]. J. Mater. Chem. A, 2018,6(43):21261-21265. doi: 10.1039/C8TA08070D

    50. [50]

      Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes[J]. Adv. Mater., 2021,33(6)2000751. doi: 10.1002/adma.202000751

    51. [51]

      Jiang Z, Liang T B, Liu Y, Zhang S Z, Li Z X, Wang D H, Wang X L, Xia X H, Gu C D, Tu J P. Improved Ionic Conductivity and Li Dendrite Suppression Capability toward Li7P3S11-Based Solid Electrolytes Triggered by Nb and O Cosubstitution[J]. ACS Appl. Mater. Interfaces, 2020,12(49):54662-54670. doi: 10.1021/acsami.0c15903

    52. [52]

      Liu H H, Yang Z H, Wang Q, Wang X Y, Shi X Q. Atomistic Insights into the Screening and Role of Oxygen in Enhancing the Li+ Conductivity of Li7P3S11-xOx Solid-State Electrolytes[J]. Phys. Chem. Chem. Phys., 2019,21(48):26358-26367. doi: 10.1039/C9CP05329H

    53. [53]

      Ren H T, Zhang Z Q, Zhang J Z, Peng L F, He Z Y, Yu M, Yu C, Zhang L, Xie J, Cheng S J. Improvement of Stability and Solid-State Battery Performances of Annealed 70Li2S-30P2S5 Electrolytes by Additives[J]. Rare Met., 2022,41:106-114. doi: 10.1007/s12598-021-01804-2

    54. [54]

      Zhou L, Tufail M K, Yang L, Ahmad N, Chen R, Yang W. Cathode-Doped Sulfide Electrolyte Strategy for Boosting All-Solid-State Lithium Batteries[J]. Chem. Eng. J., 2020,391123529. doi: 10.1016/j.cej.2019.123529

    55. [55]

      Hamabe K, Utsuno F, Ohkubo T. Lithium Conduction and the Role of Alkaline Earth Cations in Li 2S-P2S5-MS (M=Ca, Sr, Ba) Glasses[J]. J. Non-Cryst. Solids, 2020,538120025. doi: 10.1016/j.jnoncrysol.2020.120025

    56. [56]

      Xu R C, Xia X H, Wang X L, Xia Y, Tu J P. Tailored Li2S-P2S5 Glass-Ceramic Electrolyte by MoS2 Doping with High Ionic Conductivity for All-Solid-State Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2017,5(6):2829-2834. doi: 10.1039/C6TA10142A

    57. [57]

      Rajagopal R, Ryu K S. Structural Investigations, Visualization, and Electrolyte Properties of Silver Halide-Doped Li7P3S11 Lithium Superionic Conductors[J]. ACS Sustainable Chem. Eng., 2021,9(3):1105-1117. doi: 10.1021/acssuschemeng.0c03634

    58. [58]

      Ujiie S, Inagaki T, Hayashi A, Tatsumisago M. Conductivity of 70Li2S·30P2S5 Glasses and Glass-Ceramics Added with Lithium Halides[J]. Solid State Ionics, 2014,263:57-61. doi: 10.1016/j.ssi.2014.05.002

    59. [59]

      Ujiie S, Hayashi A, Tatsumisago M. Structure, Ionic Conductivity and Electrochemical Stability of Li2S-P2S5-LiI Glass and Glass-Ceramic Electrolytes[J]. Solid State Ionics, 2012,211:42-45. doi: 10.1016/j.ssi.2012.01.017

    60. [60]

      Aoki Y, Ogawa K, Nakagawa T, Hasegawa Y, Sakiyama Y, Kojima T, Tabuchi M. Chemical and Structural Changes of 70Li2S·30P2S5 Solid Electrolyte during Heat Treatment[J]. Solid State Ionics, 2017,310:50-55. doi: 10.1016/j.ssi.2017.08.006

    61. [61]

      Minami K, Mizuno F, Hayashi A, Tatsumisago M. Structure and Properties of the 70Li2S· (30-x)P2S5·xP2O5 Oxysulfide Glasses and Glass-Ceramics[J]. J. Non-Cryst. Solids, 2008,354(2/3/4/5/6/7/8/9):370-373.

    62. [62]

      Minami K, Hayashi A, Tatsumisago M. Preparation and Characterization of Lithium Ion Conducting Li2S-P2S5-GeS2 Glasses and Glass-Ceramics[J]. J. Non-Cryst. Solids, 2010,356(44/45/46/47/48/49):2666-2669.

    63. [63]

      Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, Tu J P. All-Solid-State Lithium-Sulfur Batteries Based on a Newly Designed Li7P2.9Mn0.1S10.7I0.3 Superionic Conductor[J]. J. Mater. Chem. A, 2017,5(13):6310-6317. doi: 10.1039/C7TA01147D

    64. [64]

      Zhang N, Ding F, Yu S, Zhu K, Li H, Zhang W, Liu X, Xu Q. Novel Research Approach Combined with Dielectric Spectrum Testing for Dual-Doped Li7P3S11 Glass-Ceramic Electrolytes[J]. ACS Appl. Mater. Interfaces, 2019,11(31):27897-27905. doi: 10.1021/acsami.9b08218

    65. [65]

      Yu C, Ganapathy S, Van Eck E R H, Van Eijck L, De Klerk N, Kelder E M, Wagemaker M. Investigation of Li-Ion Transport in Li7P3S11 and Solid-State Lithium Batteries[J]. J. Energy Chem., 2019,38:1-7. doi: 10.1016/j.jechem.2018.12.017

    66. [66]

      Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improved Chemical Stability and Cyclability in Li2S-P2S5-P2O5-ZnO Composite Electrolytes for All-Solid-State Rechargeable Lithium Batteries[J]. J. Alloys Compd., 2014,591:247-250. doi: 10.1016/j.jallcom.2013.12.191

    67. [67]

      Tan D H S, Banerjee A, Deng Z, Wu E A, Han N, Doux J M, Wang X F, Cheng J H, Ong S P, Meng Y S, Chen Z. Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process[J]. ACS Appl. Energy Mater., 2019,2(9):6542-6550. doi: 10.1021/acsaem.9b01111

    68. [68]

      Vardar G, Bowman W J, Lu Q Y, Wang J Y, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B. Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode[J]. Chem. Mater., 2018,30(18):6259-6276. doi: 10.1021/acs.chemmater.8b01713

    69. [69]

      Zhu Y Z, He X F, Mo Y F. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations[J]. ACS Appl. Mater. Interfaces, 2015,7(42):23685-23693. doi: 10.1021/acsami.5b07517

    70. [70]

      Han F D, Zhu Y Z, He X F, Mo Y F, Wang C S. Electrochemical Stability of Li10GeP2S12 and Li7La3 Zr2O12 Solid Electrolytes[J]. Adv. Energy Mater., 2016,6(8)1501590. doi: 10.1002/aenm.201501590

    71. [71]

      Haruyama J, Sodeyama K, Han L Y, Takada K, Tateyama Y. Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery[J]. Chem. Mater., 2014,26(14):4248-4255. doi: 10.1021/cm5016959

    72. [72]

      Haruyama J, Sodeyama K, Tateyama Y. Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery[J]. ACS Appl. Mater. Interfaces, 2017,9(1):286-292. doi: 10.1021/acsami.6b08435

    73. [73]

      Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W B, Binder J O, Hartmann P, Zeier W G, Janek J. Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes[J]. Chem. Mater., 2017,29(13):5574-5582. doi: 10.1021/acs.chemmater.7b00931

    74. [74]

      Richards W D, Miara L J, Wang Y, Kim J C, Ceder G. Interface Stability in Solid-State Batteries[J]. Chem. Mater., 2015,28(1):266-273.

    75. [75]

      Han Q G, Li X L, Shi X X, Zhang H Z, Song D W, Ding F, Zhang L Q. Outstanding Cycle Stability and Rate Capabilities of the All-Solid-State Li-S Battery with Li7P3S11 Glass-Ceramic Electrolyte and Core-Shell S@BP2000 Nanocomposite[J]. J. Mater. Chem. A, 2019,7(8):3895-3902. doi: 10.1039/C8TA12443D

    76. [76]

      Kizilaslan A, Efe S, Akbulut H. Electrochemical Evaluation of Different Graphene/Sulfur Composite Synthesis Routes in All-Solid-State Lithium-Sulfur Batteries[J]. J. Solid State Electrochem., 2020,24(10):2279-2288. doi: 10.1007/s10008-020-04734-8

    77. [77]

      Shi J M, Liu G Z, Weng W, Cai L T, Zhang Q, Wu J H, Xu X X, Yao X Y. Co3S4@Li7P3S11 Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(12):14079-14086. doi: 10.1021/acsami.0c02085

    78. [78]

      Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Li H, Chen L Q, Xu X X. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life[J]. Nano Lett., 2016,16(11):7148-7154. doi: 10.1021/acs.nanolett.6b03448

    79. [79]

      Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, Tu J P. Rational Coating of Li7P3S11 Solid Electrolyte on MoS2 Electrode for All-Solid-State Lithium Ion Batteries[J]. J. Power Sources, 2018,374:107-112. doi: 10.1016/j.jpowsour.2017.10.093

    80. [80]

      Takada K, Ohta N, Zhang L, Xu X X, Hang B T, Ohnishi T, Osada M, Sasaki T. Interfacial Phenomena in Solid-State Lithium Battery with Sulfide Solid Electrolyte[J]. Solid State Ionics, 2012,225:594-597. doi: 10.1016/j.ssi.2012.01.009

    81. [81]

      Woo J H, Travis J J, George S M, Lee S H. Utilization of Al2O3 Atomic Layer Deposition for Li Ion Pathways in Solid State Li Batteries[J]. J. Electrochem. Soc., 2015,162(3):A344-A349. doi: 10.1149/2.0441503jes

    82. [82]

      Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R Z, Osada M, Sasaki T. Interfacial Modification for High-Power Solid-State Lithium Batteries[J]. Solid State Ionics, 2008,179(27/28/29/30/31/32):1333-1337.

    83. [83]

      Lee S H, Yoon C S, Amine K, Sun Y K. Improvement of Long-Term Cycling Performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 Coating[J]. J. Power Sources, 2013,234:201-207. doi: 10.1016/j.jpowsour.2013.01.045

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(56)
  • Abstract views(2312)
  • HTML views(547)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return