Citation: Wen-Lin ZU, Li LI, Ji-Wei HUANG, Ying-Ru SUN, Feng-Yan MA, Yan-Zhen CAO. Multi-pathway Photoelectron Migration and Photocatalytic Properties of AgIn5S8/Carbon Quantum Dots/ZnIn2S4[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1059-1072. doi: 10.11862/CJIC.2022.113 shu

Multi-pathway Photoelectron Migration and Photocatalytic Properties of AgIn5S8/Carbon Quantum Dots/ZnIn2S4

Figures(13)

  • Firstly, ZnIn2S4 was modified by the up-conversion photoluminescence (UCPL) properties of carbon quantum dots (CQDs), and AgIn 5S8/CQDs/ZnIn 2S4 composite was prepared by ion - exchange method. X - ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-VIS DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption test, photoluminescence (PL), and electrochemical impedance (EIS) were used to characterize the composition, structure, morphology, surface physical, and chemical properties of the composite. The results show that the synergistic effect between the different components in the composite results in a broad spectral response (250 - 800 nm). Compared with the comparative system, AgIn5S 8/CQDs/ZnIn2S 4 exhibited significantly enhanced photocurrent density, smaller charge transfer resistance, and prolonged photo - generated carrier lifetime. The photocatalytic activity of AgIn5S 8 /CQDs/ ZnIn2S4 was studied under different light sources using methyl orange as the model molecule. The results showed that AgIn5S8/CQDs/ZnIn2S4 had an enhanced photocatalytic activity. At the same time, the composite not only had a high photolysis water hydrogen production capacity (312.09 μmol·h-1·g-1) but also had good stability.
  • 加载中
    1. [1]

      Chen Y, Lu Q, Yan X, Mo Q H, Chen Y, Liu B T, Teng L M, Xiao W, Ge L S, Wang Q Y. Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI Microsphere[J]. Nanoscale Res. Lett., 2016,11(1):60-66. doi: 10.1186/s11671-016-1262-7

    2. [2]

      Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials for Water Splitting[J]. Chem. Soc. Rev., 2009,38(1):253-278. doi: 10.1039/B800489G

    3. [3]

      Fujishima A, Zhang X, Tryk D A. Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2008,63:515-582. doi: 10.1016/j.surfrep.2008.10.001

    4. [4]

      Jing Q F, Feng X Y, Zhao X J, Duan Z Y, Pan J L, Chen L M, Liu Y N. Bi/BiVO4 Chainlike Hollow Microstructures: Synthesis, Characterization and Application as Visible - Light - Active Photocatalysts[J]. ACS Appl. Nano Mater., 2018,1(6):2653-2661. doi: 10.1021/acsanm.8b00330

    5. [5]

      Li X, Xie J, Jiang C J, Yu J G, Zhang P Y. Review on Design and Evaluation of Environmental Photocatalysts[J]. Front. Environ. Sci. Eng., 2018,12(5):14-20. doi: 10.1007/s11783-018-1076-1

    6. [6]

      Han X G, He X X, Sun L M, Han X, Zhan W W, Xu J H, Wang X J, Chen J Q. Increasing Effectiveness of Photogenerated Carriers by In Situ Anchoring of Cu2O Nanoparticles on a Nitrogen - Doped Porous Carbon Yolk-Shell Cuboctahedral Framework[J]. ACS Catal., 2018,8(4):3348-3356. doi: 10.1021/acscatal.7b04219

    7. [7]

      Fang J, Gu J J, Liu Q L, Wang Z, Su H L, Zhang D. Three-Dimensional CdS/Au Butterfly Wing Scales with Hierarchical Rib Structures for Plasmon - Enhanced Photocatalytic Hydrogen Production[J]. ACS Appl. Matter. Interfaces, 2018,10(23):19649-19655. doi: 10.1021/acsami.8b03064

    8. [8]

      Torralvo - Fernandez M J, Enciso E, Martinez S, Sobrados I, Sanz J, Tonti D, Soria J, Yurdakal S, Palmisano G, Augugliaro V. Influence of the Preparation Temperature on the Photocatalytic Activity of 3D - Ordered Macroporous Anatase Formed with an Opal Polymer Template[J]. ACS Appl. Nano Mater., 2018,1(6):2567-2578. doi: 10.1021/acsanm.8b00253

    9. [9]

      Liu J, Zhao H, Wu M, Schueren B V D, Li Y, Deparis O, Ye J H, Ozin G A, Hasan T, Su B L. Slow Photons for Photocatalysis and Photovoltaics[J]. Adv. Mater., 2017,29(17)1605349. doi: 10.1002/adma.201605349

    10. [10]

      Zhang J Q, Li L, Liu D, Zhang J J, Hao Y T, Zhang W Z. Multi- layer and Open Three - Dimensionally Ordered Macroporous TiO2 - ZrO2 Composite: Diversified Design and the Comparison of Multiple Mode Photocatalytic Performance[J]. Mater. Des., 2015,86:818-828. doi: 10.1016/j.matdes.2015.07.166

    11. [11]

      Kandi D, Martha S, Parida K M. Quantum Dots as Enhancer in Photocatalytic Hydrogen Evolution: A Review[J]. Int. J. Hydrogen Energy, 2017,42(15):9467-9481. doi: 10.1016/j.ijhydene.2017.02.166

    12. [12]

      Kwon W, Lee G, Do S, Joo T, Rhee S W. Size-Controlled Soft-Template Synthesis of Carbon Nanodots toward Versatile Photoactive Materials[J]. Small, 2014,10(3):506-513. doi: 10.1002/smll.201301770

    13. [13]

      Jia T K, Liu M, Zheng C Y, Long F, Min Z Y, Fu F, Yu D S, Li J L, Lee J H, Kim N H. One - Pot Hydrothermal Synthesis of La - Doped ZnIn2S4 Microspheres with Improved Visible - Light Photocatalytic Performance[J]. Nanomaterials, 2020,10(10)2026. doi: 10.3390/nano10102026

    14. [14]

      Tian F, Zhu R S, Zhong J, Wang P, Ouyang F, Cao G. An efficient Preparation Method of RGO/ZnIn2S4 for Photocatalytic Hydrogen Generation under Visible Light[J]. Int. J. Hydrogen Energy, 2016,41(44):20156-20171. doi: 10.1016/j.ijhydene.2016.08.063

    15. [15]

      Shen S H, Zhao L, Guan X J, Guo L J. Improving Visible-Light Photocatalytic Activity for Hydrogen Evolution over ZnIn2S4: A Case Study of Alkaline-Earth Metal Doping[J]. J. Phys. Chem. Solids, 2011,73(1):79-83.

    16. [16]

      Goswami T, Kumaryadav D K, Bhatt H, Kuar G, Shukla A, Babu K J, Ghosh H N. Defect - Mediated Slow Carrier Recombination and Broad Photoluminescence in Non-metal-Doped ZnIn2S4 Nanosheets for Enhanced Photocatalytic Activity[J]. J. Phys. Chem. Lett., 2021,12(20):5000-5008. doi: 10.1021/acs.jpclett.1c01203

    17. [17]

      Yang Z F, Shao L H, Wang L L, Xia X N, Liu Y T, Cheng S, Yang C, Li S J. Boosted Photogenerated Carriers Separation in Z - Scheme Cu3P/ZnIn2S4 Heterojunction Photocatalyst for Highly Efficient H2 Evolution under Visible Light[J]. Int. J. Hydrogen Energy, 2020,45(28):14334-14346. doi: 10.1016/j.ijhydene.2020.03.139

    18. [18]

      Guan Z J, Xu Z Q, Li Q Y, Wang P, Li G Q, Yang J J. AgIn5S8 Nanoparticles Anchored on 2D Layered ZnIn2S4 to Form 0D/2D Heterojunction for Enhanced Visible - Light Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B, 2018,227:512-518. doi: 10.1016/j.apcatb.2018.01.068

    19. [19]

      Zhang Q, Wang M, Ao M Y, Luo Y B, Zhang A T, Zhao L N, Yan L S, Deng F, Luo X B. Solvothermal Synthesis of Z - Scheme AgIn5S 8/Bi2WO6 Nano-Heterojunction with Excellent Performance for Photocatalytic Degradation and Cr(Ⅵ) Reduction[J]. J. Alloys Compd., 2019,805:41-49. doi: 10.1016/j.jallcom.2019.06.331

    20. [20]

      Zhu S M, Zhang Y N, Qian X J, Wang X X, Su W Y. Zn Defects - Mediated Z - Scheme Electron - Hole Separation in AgIn5S8/ZnS Heterojunction for Enhanced Visible-Light Photocatalytic Hydrogen Evolution[J]. Appl. Surf. Sci., 2020,504144396. doi: 10.1016/j.apsusc.2019.144396

    21. [21]

      Lin Z Q, Zheng Y, Deng F, Luo X B, Zou J P, Shao P H, Zhang S Q, Tang H B. Target - Directed Design of Dual - Functional Z - Scheme AgIn5S8/SnS2 Heterojunction for Pb(Ⅱ) Capture and Photocatalytic Reduction of Cr(Ⅵ): Performance and Mechanism Insight[J]. Sep. Purif. Technol., 2021,277119430. doi: 10.1016/j.seppur.2021.119430

    22. [22]

      Zhang W J, Li D Z, Sun M, Shao Y, Chen Z X, Xiao G C, Fu X Z. Microwave Hydrothermal Synthesis and Photocatalytic Activity of AgIn5S8 for the Degradation of Dye[J]. J. Solid State Chem., 2010,183(10):2466-2474. doi: 10.1016/j.jssc.2010.08.011

    23. [23]

      Chen D, Ye J H. Photocatalytic H2 Evolution under Visible Light Irradiation on AgIn5S8 Photocatalyst[J]. J. Phys. Chem. Solids, 2007,68:2317-2320. doi: 10.1016/j.jpcs.2007.07.059

    24. [24]

      Shen S H, Zhao L, Guo L J. Cetyltrimethylammoniumbromide (CTAB)-Assisted Hydrothermal Synthesis of ZnIn 2S4 as an Efficient Visible-Light-Driven Photocatalyst for Hydrogen Production[J]. Int. J. Hydrogen Energy, 2008,33(17):4501-4510. doi: 10.1016/j.ijhydene.2008.05.043

    25. [25]

      Wu W T, Zhan L Y, Fan W Y, Song J Z, Li X M, Li Z T, Wang R Q, Zhang J Q, Zheng J T, Wu M B, Zeng H B. Cu - N Dopants Boost Electron Transfer and Photooxidation Reactions of Carbon Dots[J]. Angew. Chem. Int. Ed., 2015,54:4929-4932.

    26. [26]

      Liu Y, Yu Y X, Zhang W D. Carbon Quantum Dots - Doped CdS Microspheres with Enhanced Photocatalytic Performance[J]. J. Alloys Compd., 2013,569(25):102-110.

    27. [27]

      Miao R, Luo Z, Zhong W, Chen S Y, Jiang T, Dutta B, Nasr Y, Zhang Y S, Suib S L. Mesoporous TiO2 Modified with Carbon Quantum Dots as a High-Performance Visible Light Photocatalyst[J]. Appl. Catal. B, 2016,189:26-38. doi: 10.1016/j.apcatb.2016.01.070

    28. [28]

      Li M Y, Ma C J, Wang G L, Zhang X F, Dong X L, Ma H C. Controlling the Up - Conversion Photoluminescence Property of Carbon Quantum Dots (CQDs) by Modifying Its Surface Functional Groups for Enhanced Photocatalytic Performance of CQDs/BiVO4 under a Broad-Spectrum Irradiation[J]. Res. Chem. Intermed., 2021,47(8):3467-3485.

    29. [29]

      Yuan C, Liu B H, Liu F, Han M Y, Zhang Z P. Fluorescence "Turn On" Detection of Mercuric Ion Based on Bis(dithiocarbamato)copper(Ⅱ) Complex Functionalized Carbon Nanodots[J]. Anal. Chem., 2014,86(2):1123-1130. doi: 10.1021/ac402894z

    30. [30]

      Ye L, Li Z H. Rapid Microwave-Assisted Syntheses of Reduced Graphene Oxide (RGO)/ZnIn2S4 Microspheres as Superior Noble-Metal-Free Photocatalyst for Hydrogen Evolutions under Visible Light[J]. Appl. Catal. B, 2014,160-161:552-557. doi: 10.1016/j.apcatb.2014.06.012

    31. [31]

      Shi W L, Lv H C, Yuan S L, Huang H, Liu Y, Kang Z H. Synergetic Effect of Carbon Dots as Co - catalyst for Enhanced Photocatalytic Performance of Methyl Orange on ZnIn2S4 Microspheres[J]. Sep. Purif. Technol., 2017,174:282-289. doi: 10.1016/j.seppur.2016.11.013

    32. [32]

      Agostinelli E, Baistooni C, Fiorani D, Mattogno G, Nogues M. An XPS Study of the Electronic Structure of the ZnxCd1-xCr2X 4 (X=S, Se) Spinel System[J]. J. Phys. Chem. Solids, 1989,50(3):269-272. doi: 10.1016/0022-3697(89)90487-3

    33. [33]

      Muijsers J C, Weber T, Vanhardeveld R M, Zandbergen H W, Niemantsverdriet J W. Sulfidation Study of Molybdenum Oxide Using MoO3/SiO2/Si(100) Model Catalysis and Mo3 - Sulfur Cluster Compounds[J]. J. Catal., 1995,157(2):689-705.

    34. [34]

      Hu X L, Yu J C, Gong J M, Li Q. Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process[J]. Cryst. Growth Des., 2007,7(12):2444-2448. doi: 10.1021/cg060767o

    35. [35]

      Wang R, Zhao L J, Li L, Song Q, Huang J W. Rose Spherical Structure Ag2S/ZnIn2S4/ZnS Composites with Visible Light Response: Enhanced Photodegradation and Hydrogen Production Performance[J]. J. Phys. Chem. Solids, 2020,136109148. doi: 10.1016/j.jpcs.2019.109148

    36. [36]

      Ding Y, Gao Y H, Li Z H. Carbon Quantum Dots (CQDs) and Co(dmgH) 2PyCl Synergistically Promote Photocatalytic Hydrogen Evolution over Hexagonal ZnIn2S 4[J]. J. Appl. Surf. Sci., 2018,462:255-262. doi: 10.1016/j.apsusc.2018.08.006

    37. [37]

      Wang B Q, Deng Z R, Fu X Z, Li Z H. Photoreduction Obtained MoS2/CQDs for Assembly of Ternary MoS2/CQDs/ZnIn 2S4 Nanocomposite for Efficient Photocatalytic Hydrogen Evolution under Visible Light[J]. J. Mater. Chem. A, 2018,6(40):19735-19742. doi: 10.1039/C8TA07797E

    38. [38]

      Griinert W G, Schlogl R, Kargef H G. Investigations of Zeolites by Photoelectron and Ion Scattering Spectroscopy. 1. New Applications of Surface Spectroscopic Methods to Zeolites by a High-Temperature Measurement Technique[J]. J. Phys. Chem. B, 1993,97:8638-8645. doi: 10.1021/j100135a017

    39. [39]

      Li K, Chai B, Peng T Y, Mao J, Zan L. Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light[J]. ACS Catal., 2013,3:170-177. doi: 10.1021/cs300724r

    40. [40]

      Huang J W, Li L, Chen J Q, Ma F Y, Yu Y. Broad Spectrum Response Flower Spherical - like Composites CQDs@CdIn2S4/CdS Modified by CQDs with Up - Conversion Property for Photocatalytic Degradation and Water Splitting[J]. Int. J. Hydrogen Energy, 2020,45(3):1822-1836. doi: 10.1016/j.ijhydene.2019.11.078

    41. [41]

      Li Y X, Zhang W Z, Li L, Yi C X, Lv H Y, Song Q. Litchi-like CdS/ CdTiO3-TiO2 Composite: Synthesis and Enhanced Photocatalytic Performance for Crystal Violet Degradation and Hydrogen Production[J]. RSC Adv., 2016,6(56):51374-51386. doi: 10.1039/C6RA05631H

    42. [42]

      Bozetine H, Meziane S, Aziri S, Berkane N, Allam D, Boudinar S, Hadjersi T. Facile and Green Synthesis of a ZnO/CQDs/AgNPs Ternary Heterostructure Photocatalyst: Study of the Methylene Blue Dye Photodegradation[J]. Bull. Mater. Sci., 2021,44(1)64. doi: 10.1007/s12034-021-02353-1

    43. [43]

      Wang F L, Wang Y F, Feng Y P, Zeng Y Q, Xie Z J, Zhang Q X, Su Y H, Chen P, Liu Y, Yao K, Lv W Y, Liu G G. Novel Ternary Photocatalyst of Single Atom-Dispersed Silver and Carbon Quantum Dots Co-loaded with Ultrathin g-C3N4 for Broad Spectrum Photocatalytic Degradation of Naproxen[J]. Appl. Catal. B, 2018,221:510-520. doi: 10.1016/j.apcatb.2017.09.055

    44. [44]

      Qin J Y, Zeng H P. Photocatalysts Fabricated by Depositing Plasmonic Ag Nanoparticles on Carbon Quantum Dots/Graphitic Carbon Nitride for Broad Spectrum Photocatalytic Hydrogen Generation[J]. Appl. Catal. B, 2017,209:161-173. doi: 10.1016/j.apcatb.2017.03.005

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(2)
  • Abstract views(1059)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return