Citation: Xiao-Xue WU, Yan-Yan QI, Ying-Yi WANG, Li WANG, Gao-Mei TU, Yang-He FU, De-Li CHEN, Wei-Dong ZHU, Fu-Min ZHANG. Synthesis of Amines by Oxidative Coupling of Benzylamine over a Vanadium-Nitrogen Co-doped Porous Carbon Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1049-1058. doi: 10.11862/CJIC.2022.112 shu

Synthesis of Amines by Oxidative Coupling of Benzylamine over a Vanadium-Nitrogen Co-doped Porous Carbon Catalyst

  • Corresponding author: Fu-Min ZHANG, zhangfumin@zjnu.edu.cn
  • Received Date: 12 January 2022
    Revised Date: 14 April 2022

Figures(8)

  • Synthesis of imine compounds via benzylamine oxidative coupling has become one of the most ideal methods due to its high atom economy and environmental friendliness. The key is to develop high - performance non-noble metal-based heterogeneous catalysts. In this work, a vanadium-nitrogen co-doped porous carbon (V-N-C) catalyst was prepared via high-temperature pyrolysis (900 ℃ for 2 h in an inert atmosphere) combined with acidleaching (1 mol·L-1 HCl solution at 120 ℃ for 12 h) approach by using biomass chitosan as the sacrificial template, vanadium acetylacetonate as the source of metal vanadium, and ZnCl2 as the pore-forming agent. Various characterization techniques including a high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) investigation were used to analyze the composition, structure, vanadium species size, content, and other physical and chemical properties of the catalyst, and its catalytic performance was evaluated in the oxidative cou-pling reaction of benzylamine. The characterization results showed that the specific surface area of the V-N-C catalyst was as high as 1 470 m2·g-1, the pore volume was 1.06 cm3·g-1, and the mass fraction of the vanadium species was 0.19% that were highly dispersed on the support likely in the form of single atoms (VNx). In the oxidative selfcoupling reaction of benzylamine to the imine (reaction conditions: toluene as solvent, 110 ℃, 1.01×105 Pa O2, 12 h), the developed V-N-C exhibited excellent activity (99%), exclusive selectivity (99%), outperforming the homogeneous VO(acac)2 and heterogeneous V2O5 catalysts. Moreover, V-N-C was repeatedly used 9 times without any decay in reactivity and stability. Furthermore, V-N-C presented excellent universality for a series of substrates containing different functional groups. Mechanism studies indicated that the reaction steps were involved in the initial formation of benzylimine and H2O2 intermediates by activating benzylamine and oxygen molecules, respectively, on the VNx and defect sites of V-N-C, then benzylimine and benzylamine condensed to release an NH3 molecule to gener-ate the target product imine.
  • 加载中
    1. [1]

      Pahalagedara M N, Pahalagedara L R, Kriz D, Chen S Y, Beaulieu F, Thalgaspitiya W, Suib S L. Copper Aluminum Mixed Oxide (CuAl MO) Catalyst: A Green Approach for the One - Pot Synthesis of Imines under Solvent-Free Conditions[J]. Appl. Catal. B, 2016,188:227-234. doi: 10.1016/j.apcatb.2016.02.007

    2. [2]

      Dutta B, March S, Achola L, Sahoo S, He J K, Amin A S, Wu Y, Poges S, Alpay S P, Suib S L. Mesoporous Cobalt/Manganese Oxide: A Highly Selective Bifunctional Catalyst for Amine - Imine Transformations[J]. Green Chem., 2018,20(14):3180-3185. doi: 10.1039/C8GC00862K

    3. [3]

      Mohan D C, Sadhukha A, Maayan G. A Metallopeptoid as an Efficient Bioinspired Cooperative Catalyst for the Aerobic Oxidative Synthesis of Imines[J]. J. Catal., 2017,355:139-144. doi: 10.1016/j.jcat.2017.09.018

    4. [4]

      Jin J J, Yang C J, Zhang B G, Deng K J. Selective Oxidation of Amines Using O2 Catalyzed by Cobalt Thioporphyrazine under Visible Light[J]. J. Catal., 2018,361:33-39. doi: 10.1016/j.jcat.2018.02.015

    5. [5]

      Gawronski J, Wascinska N, Gajewy J. Recent Progress in Lewis Base Activation and Control of Stereoselectivity in the Additions of Trimethylsilyl Nucleophiles[J]. Chem. Rev., 2008,108(12):5227-5252. doi: 10.1021/cr800421c

    6. [6]

      De S K, Gibbs R A. Bismuth Trichloride Catalyzed Synthesis of α - Aminonitriles[J]. Tetrahedron Lett., 2004,45(40):7407-7408. doi: 10.1016/j.tetlet.2004.08.071

    7. [7]

      Das B, Laxminarayana K, Ravikanth B, Ramarao B. Efficient Synthesis of Homoallylic Alcohols and Amines Using 2, 4, 6-Trichloro-1, 3, 5-triazine[J]. Tetrahedron Lett., 2006,47(51):9103-9106. doi: 10.1016/j.tetlet.2006.10.068

    8. [8]

      Grirrane A, Corma A, Garcia H. Highly Active and Selective Gold Catalysts for the Aerobic Oxidative Condensation of Benzylamines to Imines and One-Pot, Two-Step Synthesis of Secondary Benzylamines[J]. J. Catal., 2009,264(2):138-144. doi: 10.1016/j.jcat.2009.03.015

    9. [9]

      Liu P, Li C, Hensen E J M. Efficient Tandem Synthesis of Methyl Esters and Imines by Using Versatile Hydrotalcite - Supported Gold Nanoparticles[J]. Chem. Eur. J., 2012,18(38):12122-12129. doi: 10.1002/chem.201202077

    10. [10]

      Mielby J, Poreddy R, Engelbrekt C, Kegnaes S. Highly Selective Formation of Imines Catalyzed by Silver Nanoparticles Supported on Alumina[J]. Chin. J. Catal., 2014,35(5):670-676. doi: 10.1016/S1872-2067(14)60033-4

    11. [11]

      Neeli C K P, Ganji S, Ganjala V S P, Kamaraju S R R, Burri D R. Oxidative Coupling of Primary Amines to Imines under Base - Free and Additive - Free Conditions over AuNPS/SBA - NH2 Nanocatalyst[J]. RSC Adv., 2014,4(27):14128-14135. doi: 10.1039/C4RA00791C

    12. [12]

      Dai J, Yang J, Wang X H, Zhang L, Li Y J. Enhanced Visible-Light Photocatalytic Activity for Selective Oxidation of Amines into Imines over TiO2(B)/Anatase Mixed-Phase Nanowires[J]. Appl. Surf. Sci., 2015,349:343-352. doi: 10.1016/j.apsusc.2015.04.232

    13. [13]

      Sun D R, Ye L, Li Z H. Visible- Light -Assisted Aerobic Photocatalytic Oxidation of Amines to Imines over NH2 - MiL - 125(Ti)[J]. Appl. Catal. B, 2015,164:428-432. doi: 10.1016/j.apcatb.2014.09.054

    14. [14]

      Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F, Golovko V B, Jungsuttiwong S, Inceesungvorn B. Oxygen - Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight[J]. J. Colloid Interface Sci., 2021,581:719-728. doi: 10.1016/j.jcis.2020.07.140

    15. [15]

      Jin H H, Kou Z K, Cai W W, Zhou H, Ji P X, Liu B S, Radwan A, He D P, Mu S C. P—Fe Bond Oxygen Reduction Catalysts toward High-Efficiency Metal-Air Batteries and Fuel Cells[J]. J. Mater. Chem. A, 2020,8(18):9121-9127. doi: 10.1039/D0TA02334E

    16. [16]

      Fu L L, Lu Y J, Liu Z G, Zhu R L. Influence of the Metal Sites of M-N - C (M=Co, Fe, Mn) Catalysts Derived from Metalloporphyrins in Ethylbenzene Oxidation[J]. Chin. J. Catal., 2016,37(3):398-404. doi: 10.1016/S1872-2067(15)61029-4

    17. [17]

      Zheng X J, Cao X C, Sun Z H, Zeng K, Yan J, Strasser P, Chen X, Sun S H, Yang R Z. Indiscrete Metal/Metal - N - C Synergic Active Sites for Efficient and Durable Oxygen Electrocatalysis toward Advanced Zn-Air Batteries[J]. Appl. Catal. B, 2020,272118967. doi: 10.1016/j.apcatb.2020.118967

    18. [18]

      XU F Q, HU X F, CHENG F Y, LIANG J, TAO Z L, CHEN J. Prepa-ration of Porous Carbon - Supported Ni Nanoparticles for Catalytic Hydrogen Generation from Ammonia Borane Hydrolysis[J]. Chinese J. Inorg. Chem., 2015,31(1):103-108.  

    19. [19]

      Bisen O Y, Nandan R, Yadav A K, Pavithra B, Nanda K K. In Situ Self-Organization of Uniformly Dispersed Co-N-C Centers at Moderate Temperature without a Sacrificial Subsidiary Metal[J]. Green Chem., 2021,23(8):3115-3126. doi: 10.1039/D0GC04050A

    20. [20]

      Huang K X, Zhang W Q, Li J, Fan Y J, Yang B, Rong C Y, Qi J H, Chen W, Yang J. In Situ Anchoring of Zeolite Imidazole Framework-Derived Co, N - Doped Porous Carbon on Multiwalled Carbon Nanotubes toward Efficient Electrocatalytic Oxygen Reduction[J]. ACS Sustainable Chem. Eng., 2020,8(1):478-485. doi: 10.1021/acssuschemeng.9b05810

    21. [21]

      Sun J T, Niu J, Liu M Y, Ji J, Dou M L, Wang F. Biomass- Derived Nitrogen-Doped Porous Carbons with Tailored Hierarchical Porosity and High Specific Surface Area for High Energy and Power Density Supercapacitors[J]. Appl. Surf. Sci., 2018,427:807-813.

    22. [22]

      Sun L, Fu Y, Tian C G, Yang Y, Wang L, Yin J, Ma J, Wang R H, Fu H G. Isolated Boron and Nitrogen Sites on Porous Graphitic Carbon Synthesized from Nitrogen-Containing Chitosan for Superca-pacitors[J]. ChemSusChem, 2014,7(6):1637-1646. doi: 10.1002/cssc.201400048

    23. [23]

      Yang Y H, Cui J H, Zheng M T, Hu C F, Tan S Z, Xiao Y, Yang Q, Liu Y L. One - Step Synthesis of Amino - Functionalized Fluorescent Carbon Nanoparticles by Hydrothermal Carbonization of Chitosan[J]. Chem. Commun., 2012,48(3):380-382. doi: 10.1039/C1CC15678K

    24. [24]

      Yu Z L, Li G C, Fechler N, Yang N, Ma Z Y, Wang X, Antonietti M, Yu S H. Polymerization under Hypersaline Conditions: A Robust Route to Phenolic Polymer-Derived Carbon Aerogels[J]. Angew. Chem. Int. Ed., 2016,55(47):14623-14627. doi: 10.1002/anie.201605510

    25. [25]

      Liu W G, Zhang L L, Liu X, Liu X Y, Yang X F, Miao S, Wang W T, Wang A Q, Zhang T. Discriminating Catalytically Active FeNx Spe-cies of Atomically Dispersed Fe-N-C Catalyst for Selective Oxidation of the C—H Bond[J]. J. Am. Chem. Soc., 2017,139(31):10790-10798. doi: 10.1021/jacs.7b05130

    26. [26]

      Qi Y Y, Xu Q H, Tu G M, Fu Y H, Zhang F M, Zhu W D. Vanadium Oxides Anchored on Nitrogen - Incorporated Carbon: An Efficient Heterogeneous Catalyst for the Selective Oxidation of Sulfide to Sulf-oxide[J]. Catal. Commun., 2020,145106101. doi: 10.1016/j.catcom.2020.106101

    27. [27]

      Wang X X, Cullen D A, Pan Y T, Hwang S, Wang M Y, Feng Z X, Wang J Y, Engelhard M H, Zhang H G, He Y H, Shao Y Y, Su D, More K L, Spendelow J S, Wu G. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells[J]. Adv. Mater., 2018,30(11)1706758. doi: 10.1002/adma.201706758

    28. [28]

      Yin P Q, Yao T, Wu Y, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts[J]. Angew. Chem. Int. Ed., 2016,55(36):10800-10805. doi: 10.1002/anie.201604802

    29. [29]

      WU X M, MAO J, ZHOU Z P, ZHANG C, BU J T, LI Z. Building a High - Performance Supercapacitor with Nitrogen - Doped Graphene Quantum Dots/MOF -Derived Porous Carbon Nanosheets[J]. Chinese J. Inorg. Chem., 2020,36(7):1298-1308.  

    30. [30]

      Xu Q H, Feng B B, Ye C L, Fu Y H, Chen D L, Zhang F M, Zhang J W, Zhu W D. Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15168-15177. doi: 10.1021/acsami.0c22453

    31. [31]

      Zhang C H, Zhao P S, Zhang Z L, Zhang J W, Yang P, Gao P, Gao J, Liu D. Co - N - C Supported on SiO2: A Facile, Efficient Catalyst for Aerobic Oxidation of Amines to Imines[J]. RSC Adv., 2017,7(75):47366-47372. doi: 10.1039/C7RA09516C

    32. [32]

      Dhakshinamoorthy A, Alvaro M, Garcia H. Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Frame-work Solids[J]. ChemCatChem, 2010,2(11):1438-1443. doi: 10.1002/cctc.201000175

    33. [33]

      Zhang N, Li X Y, Liu Y F, Long R, Li M Q, Chen S M, Qi Z M, Wang C M, Song L, Jiang J, Xiong Y J. Defective Tungsten Oxide Hydrate Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic Catalysis by Oxygen Vacancies and Brønsted Acid Sites[J]. Small, 2017,13(31)1701354. doi: 10.1002/smll.201701354

    34. [34]

      Dissanayake D, Achola L A, Kerns P, Rathnayake D, He J, Macharia J, Suib S L. Aerobic Oxidative Coupling of Amines to Imines by Mesoporous Copper Aluminum Mixed Metal Oxides via Generation of Reactive Oxygen Species (Ros)[J]. Appl. Catal. B, 2019,249:32-41. doi: 10.1016/j.apcatb.2019.02.037

    35. [35]

      Chen B, Wang L Y, Dai W, Shang S S, Lv Y, Gao S. Metal- Free and Solvent-Free Oxidative Coupling of Amines to Imines with Mesoporous Carbon from Macrocyclic Compounds[J]. ACS Catal., 2015,5(5):2788-2794. doi: 10.1021/acscatal.5b00244

    36. [36]

      Zhang N, Li X Y, Liu Y F, Long R, Li M Q, Chen S M, Qi Z M, Wang C M, Song L, Jiang J, Xiong Y J. Defective Tungsten Oxide Hydrate Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic Catalysis by Oxygen Vacancies and Bronsted Acid Sites[J]. Small, 2017,13(31)1701354. doi: 10.1002/smll.201701354

    37. [37]

      Qiu X, Len C, Luque R, Li Y W. Solventless Oxidative Coupling of Amines to Imines by Using Transition - Metal - Free Metal - Organic Frameworks[J]. ChemSusChem, 2014,7(6):1684-1688. doi: 10.1002/cssc.201301340

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(18)
  • Abstract views(1787)
  • HTML views(505)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return