Citation: Huan ZHENG, Yan-Xiao CHU, Si-Si FENG, Cai-Xia YUAN. Structure, Thermostability, Fluorescence, and Dye Adsorption Properties of a Copper(Ⅱ) Coordination Polymer Based on (+)-Di-p-toluoyl-D-tartaric Acid[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1112-1120. doi: 10.11862/CJIC.2022.109 shu

Structure, Thermostability, Fluorescence, and Dye Adsorption Properties of a Copper(Ⅱ) Coordination Polymer Based on (+)-Di-p-toluoyl-D-tartaric Acid

Figures(12)

  • A coordination polymer, formulated as {[Cu(HDTTA)2(DMF)(H2O)]·DMF·H2O}n (1) (D-H2DTTA=(+) -di-p-toluoyl-D-tartaric acid, DMF=N, N-dimethylformamide), has been synthesized. Its structure was characterized by IR spectrum, elemental analysis, X-ray single-crystal diffraction, and powder X-ray diffraction. Complex 1 features a 1D chain structure along the a-axis and forms a 2D layered structure in the ab plane through weak intermolecular interactions. The thermal decomposition process of 1 included the loss of solvent molecules below 197 ℃ and follow-up decomposition of the main structure. Under the excitation of 300 nm, the fluorescence of the ligand was quenched by the coordinated Cu2+ cation. In addition, complex 1 exhibited a good and specific adsorption effect on methylene blue dye in an aqueous solution with an adsorption rate of 81% after 49 min.
  • 加载中
    1. [1]

      BU X H. Coordination Polymer Chemistry. Beijing: Science Press, 2019.

    2. [2]

      Paiman S H, Rahman M A, Uchikoshi T, Abdullah N, Othman D H M, Jaafar J, Abas K H, Ismail A F. Functionalization Effect of Fe-Type MOF for Methylene Blue Adsorption[J]. J. Saudi Chem. Soc., 2020,24:896-905. doi: 10.1016/j.jscs.2020.09.006

    3. [3]

      Jie D, Zou G L. A Novel Microporous Zinc (Ⅱ) Metal-Organic Framework with Highly Selectivity Adsorption of CO2 over CH4[J]. Inorg. Chem. Commun., 2016,69:20-23. doi: 10.1016/j.inoche.2016.04.015

    4. [4]

      Zhang L, Yang W B, Wu X Y. A Polyhedron-Based Cobalt-Organic Framework for Gas Adsorption and Separation[J]. Inorg. Chem. Commun., 2016,67:10-13. doi: 10.1016/j.inoche.2016.02.019

    5. [5]

      Leus K, Bogaerts T, Decker J D, Depauw H, Hendrickx K, Vrielinck H, Speybroeck V, Voort P V D. Systematic Study of the Chemical and Hydrothermal Stability of Selected "Stable" Metal Organic Frameworks[J]. Microporous Mesoporous Mater., 2016,226:110-116. doi: 10.1016/j.micromeso.2015.11.055

    6. [6]

      He H B, Li R, Yang Z Y, Chai L Y, Jin L F, Alhassan I S, Ren L L, Wng H Y, Huang L. Preparation of MOFs and MOFs Derived Materials and Their Catalytic Application in Air Pollution: A Review[J]. Catal. Today, 2021,375:10-29. doi: 10.1016/j.cattod.2020.02.033

    7. [7]

      Zhu J Y, Xia T F, Cui Y J, Yang Y, Qian G D. A Turn-On MOF-Based Luminescent Sensor for Highly Selective Detection of Glutathione[J]. J. Solid State Chem., 2019,270:317-323. doi: 10.1016/j.jssc.2018.11.032

    8. [8]

      Zhu M, Li M T, Zhao L, Shao K Z, Su Z M. Metal-Organic Frameworks (The Original is "Fameworks") Based on Multi-carboxylate Ligands with Threefold Symmetries and Luminescence Properties[J]. Inorg. Chem. Commun., 2017,79:69-73. doi: 10.1016/j.inoche.2017.03.020

    9. [9]

      Pandey S, Demaske B, Ejegbavwo O A. Electronic Structures and Magnetism of Zr-, Th-, and U-Based Metal-Organic Frameworks (MOFs) by Density Functional Theory[J]. Comput. Mater. Sci., 2020,184109903. doi: 10.1016/j.commatsci.2020.109903

    10. [10]

      Donkadokula N Y, Kola A K, Naz I, Saroj D. A Review on Advanced Physico-Chemical and Biological Textile Dye Wastewater Treatment Techniques[J]. Rev. Environ. Sci. Biotechnol., 2020,19:543-560. doi: 10.1007/s11157-020-09543-z

    11. [11]

      Harvey P J, Handley H K, Taylor M P. Identification of the Sources of Metal (Lead) Contamination in Drinking Waters in North-Eastern Tasmania Using Lead Isotopic Compositions[J]. Environ. Sci. Pollut. Res., 2015,22:12276-12288. doi: 10.1007/s11356-015-4349-2

    12. [12]

      Sansuk S, Srijaranai S, Srijaranai S. A New Approach for Removing Anionic Organic Dyes from Wastewater Based on Electrostatically Driven Assembly[J]. Environ. Sci. Technol., 2016,50:6477-6484. doi: 10.1021/acs.est.6b00919

    13. [13]

      de Luna L A V, da Silva T H G, Nogueira P R F, Kummrow F, Umbuzeiro G A. Aquatic Toxicity of Dyes before and after Photo-Fenton Treatment[J]. J. Hazard. Mater., 2014,276:332-338. doi: 10.1016/j.jhazmat.2014.05.047

    14. [14]

      Mathieu-Denoncourt J, Martyniuk C J, de Solla S R, Balakrishnan V K, Langlois V S. Sediment Contaminated with the Azo Dye Disperse Yellow 7 Alters Cellular Stress-and Androgen-Related Transcription in Silurana tropicalis Larvae[J]. Environ. Sci. Technol., 2014,48:2952-2961. doi: 10.1021/es500263x

    15. [15]

      Parasuraman D, Serpe M J. Poly(N-isopropylacrylamide) Microgels for Organic Dye Removal from Water[J]. ACS Appl. Mater. Interfaces, 2011,3:2732-2737. doi: 10.1021/am2005288

    16. [16]

      Ceretta M B, Nercessian D, Wolski E A. Current Trends on Role of Biological Treatment in Integrated Treatment Technologies of Textile Wastewater[J]. Front. Microbiol., 2021,12651025. doi: 10.3389/fmicb.2021.651025

    17. [17]

      Agnieszka K R, Nghiem L D, Teofil J. Functionalized Materials as a Versatile Platform for Enzyme Immobilization in Wastewater Treatment[J]. Curr. Pollut. Rep., 2021,7:263-276. doi: 10.1007/s40726-021-00193-5

    18. [18]

      Kumar S P, Gayathri R, Senthil R B. A Review on Adsorptive Separation of Toxic Metals from Aquatic System Using Biochar Produced from Agro-Waste[J]. Chemosphere, 2021,285131438. doi: 10.1016/j.chemosphere.2021.131438

    19. [19]

      Chen B Y, Jiang J Y, Yang X, Zhang X R, Westerhoff P. Roles and Knowledge Gaps of Point-of-Use Technologies for Mitigating Health Risks from Disinfection Byproducts in Tap Water: A Critical Review[J]. Water Res., 2021,200117265. doi: 10.1016/j.watres.2021.117265

    20. [20]

      Zhu G C, Bian Y N, Hursthouse A S, Xu S N, Xiong N N, Wan P. The Role of Magnetic MOFs Nanoparticles in Enhanced Iron Coagulation of Aquatic Dissolved Organic Matter[J]. Chemosphere, 2020,247125921. doi: 10.1016/j.chemosphere.2020.125921

    21. [21]

      Ridha N J, Mohamad Alosfur F K, Kadhim H B A, Ahmed L M. Synthesis of Ag Decorated TiO2 Nanoneedles for Photocatalytic Degradation of Methylene Blue Dye[J]. Mater. Res. Express, 2021,8125013. doi: 10.1088/2053-1591/ac4408

    22. [22]

      Hussain T, Hussain M, Hussain S, Kaseem M. Microwave-Assisted Synthesis of NiTe2 Photocatalyst as a Facile and Scalable Approach for Energy-Efficient Photocatalysis and Detoxification of Harmful Organic Dyes[J]. Sep. Purif. Technol., 2022,282120025. doi: 10.1016/j.seppur.2021.120025

    23. [23]

      Li L, Yang M, Lu Q, Zhu W K, MaH Q, Dai L C. Oxygen-Rich Biochar from Torrefaction: A Versatile Adsorbent for Water Pollution Control[J]. Bioresour. Technol., 2019,294122142. doi: 10.1016/j.biortech.2019.122142

    24. [24]

      Chen Y B, Tang J L, Wang S X, Zhang L B. High Selectivity and Reusability of Coordination Polymer Adsorbents: Synthesis, Adsorption Properties and Activation Energy[J]. Microporous Mesoporous Mater., 2021,324111309. doi: 10.1016/j.micromeso.2021.111309

    25. [25]

      Lai Z Z, Yang X, Qin L, An J L, Wang Z, Sun X, Zhang M D. Synthesis, Dye Adsorption, and Fluorescence Sensing of Antibiotics of a Zinc-Based Coordination Polymer[J]. J. Solid State Chem., 2021,300122278. doi: 10.1016/j.jssc.2021.122278

    26. [26]

      Lippi M, Cametti M. Highly Dynamic 1D Coordination Polymers for Adsorption and Separation Applications[J]. Coord. Chem. Rev., 2021,430213661. doi: 10.1016/j.ccr.2020.213661

    27. [27]

      Tranchemontagne D J, O'Keeffe M, Yaghi O M. Reticular Chemistry of Metal-Organic Polyhedra[J]. Angew. Chem. Int. Ed., 2008,47:5136-5147. doi: 10.1002/anie.200705008

    28. [28]

      Hu T P, Wang X X, Xue Z J, Zhang X. Structural Control and Magnetic Properties of Three Co(Ⅱ) Coordination Polymers Based on 6-(3, 5-Dicarboxylphenyl)nicotinic Acid[J]. Polyhedron, 2017,127:449-457. doi: 10.1016/j.poly.2016.11.003

    29. [29]

      Yue Q Y, Lu Y M, Chuan F X, Yuan D, Chen D Y, Yang G W, Li Q Y. Synthesis, Crystal Structure, Luminescence and Thermal Behavior of a New Energetic Zinc (Ⅱ) Compound[J]. Inorg. Chem. Commun., 2016,68:68-71. doi: 10.1016/j.inoche.2016.04.001

    30. [30]

      Xie F T, Bie H Y, Duan L M, Li G H, Zhang X, Xu J Q. Self-Assembly of Silver Polymers Based on Flexible Isonicotinate Ligand at Different pH Values: Syntheses, Structures and Photoluminescent Properties[J]. J. Solid State Chem., 2005,178:2858-2866. doi: 10.1016/j.jssc.2005.06.025

    31. [31]

      Manna K, Zhang T, Carboni M, Abney C W, Lin W B. Salicylaldimine-Based Metal-Organic Framework Enabling Highly Active Olefin Hydrogenation with Iron and Cobalt Catalysts[J]. J. Am. Chem. Soc., 2014,136:13182-13185. doi: 10.1021/ja507947d

    32. [32]

      Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Fan L M, Hu T P. Two Trinuclear Cluster-Based 3D Interpenetrated Metal-Organic Frameworks with Selective Adsorption and Antiferromagnetic Properties[J]. J Solid State Chem., 2019,271:303-308. doi: 10.1016/j.jssc.2019.01.003

    33. [33]

      Sheldrick G M. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

    34. [34]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    35. [35]

      Ma X L, Wang Z X, He X, Shao M, Li M X. 2D Double-Layered Dibenzoyl-Tartrate Chiral Coordination Polymer Containing[Mn4L2 (bpp)4] Tetrahedral Cage[J]. Inorg. Chem. Commun., 2018,92:131-135. doi: 10.1016/j.inoche.2018.04.015

    36. [36]

      ZHANG X, SUN Y Y, FENG S S, YUAN C X. Synthesis, Structures, Luminescence and Magnetic Properties of Co(Ⅱ) and Ni(Ⅱ) Coordination Compounds Based on Dibenzoyl-Tartaric Acid[J]. Chinese J. Inorg. Chem., 2021,37(12):2279-2288. doi: 10.11862/CJIC.2021.253

    37. [37]

      Li D, Lv N, Yu J K, Qiao Y, Xue X X, Li H J, Che G B. Synthesis, Crystal Structure and Highly Sensitive Detection Property of a Fluorescent Copper Coordination Polymer[J]. J. Mol. Struct., 2021,1236130347. doi: 10.1016/j.molstruc.2021.130347

    38. [38]

      Liu C X, Cui J, Wang Y F, Zhang M J. A Novel Two-Dimensional Metal-Organic Framework as a Recyclable Heterogeneous Catalyst for the Dehydrogenative Oxidation of Alcohol and the N-Arylation of Azole Compounds[J]. RSC Adv., 2021,11:11739-11744. doi: 10.1039/D1RA00248A

    39. [39]

      Feng S S, Lv H G, Li Z P, Feng G Q, Lu L P, Zhu M L. The First Example of Rhombic Dodecahedral CuBr Clusters in a Novel Mixed-Valence Cu(Ⅰ, Ⅱ)-Benzimidazole Complex[J]. CrystEngComm, 2012,14:98-102. doi: 10.1039/C1CE06215H

    40. [40]

      He H M, Sun F X, Su H M, Jia J T, Li Q, Zhu G S. Syntheses, Structures and Luminescence Properties of Three Metal-Organic Frameworks Based on 5-(4-(2H-Tetrazol-5-yl)phenoxy)isophthalic Acid[J]. CrystEngComm, 2014,3:339-343.

    41. [41]

      Liu Z Q, Zhao Y, Wang P, Kang Y S, Azam M, Al-Resayes S, Liu X H, Lu Y Q, Sun Q Y. Fluorescent Sensing and Selective Adsorption Properties of Metal-Organic Frameworks with Mixed Tricarboxylate and 1H -Imidazol-4-yl-Containing Ligands[J]. Dalton Trans., 2017,46:9022-9029. doi: 10.1039/C7DT01759F

    42. [42]

      Akhtar M N, Mantasha I, Shahid M, AlDamen M A, Khalid M, Akram M. Cationic Dye Adsorption and Separation at Discrete Molecular Level: First Example of an Iron Cluster with Rapid and Selective Adsorption of Methylene Blue from Aqueous System[J]. New J. Chem., 2021,45:1415-1422. doi: 10.1039/D0NJ05242F

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    9. [9]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    10. [10]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    11. [11]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    17. [17]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    18. [18]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

Metrics
  • PDF Downloads(6)
  • Abstract views(499)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return