Citation: Hao-Jie WANG, Rui-Qing WANG, Bing LI, Sheng SUI. Effects of Preformed Pt Nanoparticles on Structure of Platinum Nanowire Cathode for Proton Exchange Membrane Fuel Cells[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 787-799. doi: 10.11862/CJIC.2022.103 shu

Effects of Preformed Pt Nanoparticles on Structure of Platinum Nanowire Cathode for Proton Exchange Membrane Fuel Cells

Figures(9)

  • Pt nanowires (Pt NWs) have been demonstrated to have a higher specific activity of oxygen reduction reaction (ORR) than that of commercial Pt/C due to their unique structural characteristics. In this work, a cathode with a uniform distribution of Pt NWs was obtained by introducing preformed Pt nanoparticles (NPs) into the carbon matrix to induce Pt NW growth. The structure and performance of the as-prepared cathode were investigated by altering Pt NP loadings (0-0.015 mg·cm-2) and Pt NP sources (Pt/C with different Pt contents). The cathode surface was characterized by scanning electron microscopy (SEM), and the morphology and crystal structure of Pt NW were analyzed by transmission electron microscopy (TEM) and X -ray diffraction (XRD). Polarization and cyclic voltamme-try curves were obtained in single cells. The best single-cell performance, as well as the largest electrochemical surface area (ECSA) value was achieved by the cathode with preformed Pt NP loading of 0.005 mg·cm-2 originating from 40% Pt/C. Finally, a possible mechanism for the influence of preformed Pt NPs in the Pt NW distribution was proposed.
  • 加载中
    1. [1]

      Meng X T, Deng X, Zhou L S, Hu B, Tan W Y, Zhou W, Liu M L, Shao Z P. A Highly Ordered Hydrophilic -Hydrophobic Janus Bi-functional Layer with Ultralow Pt Loading and Fast Gas/Water Trans-port for Fuel Cells. Energy Environ[J]. Mater., 2021,4(1):126-133.

    2. [2]

      ZHAO X Y, WU Y E. Synthesis of High-Performance and Low-Loading PtCo/C Proton Exchange Membrane Fuel Cell Catalysts[J]. Chinese J. Inorg. Chem., 2021,37(8):1457-1464.  

    3. [3]

      Garapati M S, Sundara R.. .Highly Efficient and ORR Active Platinum-Scandium Alloy -Partially Exfoliated Carbon Nanotubes Electrocata-lyst for Proton Exchange Membrane Fuel Cell. Int[J]. J. Hydrogen Energy, 2019,44(21):10951-10963. doi: 10.1016/j.ijhydene.2019.02.161

    4. [4]

      Zhang H X, Liang J Y, Xia B W, Du S F. Ionic Liquid Modified Pt/C Electrocatalysts for Cathode Application in Proton Exchange Mem-brane Fuel Cells[J]. Front. Chem. Sci. Eng., 2019,13(4):695-701. doi: 10.1007/s11705-019-1838-8

    5. [5]

      Li W B, Lin R, Yang Y. Investigation on the Reaction Area of PEMFC at Different Position in Multiple Catalyst Layer[J]. Electrochim. Acta, 2019,302:241-248. doi: 10.1016/j.electacta.2019.02.003

    6. [6]

      Wu Z Y, Iqbal Z, Wang X Q. Metal-Free, Carbon-Based Catalysts for Oxygen Reduction Reactions[J]. Front. Chem. Sci. Eng., 2015,9(3):280-294. doi: 10.1007/s11705-015-1524-4

    7. [7]

      Liu Z Y, Zhang J L, Yu P T, Zhang J X, Makharia R, More K L, Stach E A. Transmission Electron Microscopy Observation of Corrosion Behaviors of Platinized Carbon Blacks under Thermal and Electro-chemical Conditions[J]. J. Electrochem. Soc., 2010,157(6):B906-B913. doi: 10.1149/1.3391737

    8. [8]

      Lu Y X, Du S F, Steinterger-Wilckens R.. One-Dimensional Nano-structured Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells-A Review.[J]. Appl. Catal. B, 2016,199:292-314. doi: 10.1016/j.apcatb.2016.06.022

    9. [9]

      Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. One-Dimensional Nanostructures: Synthesis, Char-acterization, and Applications[J]. Adv. Mater., 2003,15(5):353-389. doi: 10.1002/adma.200390087

    10. [10]

      Cademartiri L, Ozin G A. Ultrathin Nanowires-A Materials Chemistry Perspective[J]. Adv. Mater., 2009,21(9):1013-1020. doi: 10.1002/adma.200801836

    11. [11]

      Zhang J T, Li C M. Nanoporous Metals: Fabrication Strategies and Advanced Electrochemical Applications in Catalysis, Sensing and Energy Systems[J]. Chem. Soc. Rev., 2012,41(21):7016-7031. doi: 10.1039/c2cs35210a

    12. [12]

      Koenigsmann C, Zhou W P, Adzic R R, Sutter E, Wong S S.. Size-Dependent Enhancement of Electrocatalytic Performance in Rela-tively Defect -Free, Processed Ultrathin Platinum Nanowires.[J]. Nano Lett, 2010,10(8):2806-2811. doi: 10.1021/nl100718k

    13. [13]

      Xu L B, Yan Y S, Zhang C W, Chen J F. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction[J]. Sci. Rep., 2016,631440. doi: 10.1038/srep31440

    14. [14]

      Wang C Z, Zhang Y, Zhang Y J, Xu P, Feng C M, Chen T, Guo T, Yang F N, Wang Q, Wang J X. Highly Ordered Hierarchical Pt and PtNi Nanowire Arrays for Enhanced Electrocatalytic Activity toward Methanol Oxidation[J]. ACS Appl. Mater. Interfaces, 2018,10(11):9444-9450. doi: 10.1021/acsami.7b19727

    15. [15]

      Li C L, Sato T, Yamauchi Y. Electrochemical Synthesis of One-Dimensional Mesoporous Pt Nanorods Using the Assembly of Surfac-tant Micelles in Confined Space[J]. Angew. Chem., 2013,125(31):8208-8211. doi: 10.1002/ange.201303035

    16. [16]

      Sun S H, Yang D Q, Zhang G X, Sacher E, Dodelet J P. Synthesis and Characterization of Platinum Nanowire-Carbon Nanotube Heter-ostructures[J]. Chem. Mater., 2007,19(26):6376-6378. doi: 10.1021/cm7022949

    17. [17]

      Sun S H, Yang D, Villers D, Zhang G X, Sacher E, Dodelet J P. Template-and Surfactant-Free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires[J]. Adv. Mater., 2008,20(3):571-574. doi: 10.1002/adma.200701408

    18. [18]

      Sun S H, Jaouen F, Dodelet J P. Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Elec-trocatalysts in PEM Fuel Cells[J]. Adv. Mater., 2008,20(20):3900-3904. doi: 10.1002/adma.200800491

    19. [19]

      Sun S H, Zhang G X, Geng D S, Chen Y Q, Li R Y, Cai M, Sun X L. A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal[J]. Angew. Chem, 2011,123(2):442-446. doi: 10.1002/ange.201004631

    20. [20]

      Meng H, Zhan Y, Zeng D, Zhang X X, Zhang G Q, Jaouen F. Factors Influencing the Growth of Pt Nanowires via Chemical Self-Assembly and Their Fuel Cell Performance[J]. Small, 2015,11(27):3377-3386. doi: 10.1002/smll.201402904

    21. [21]

      Du C Y, Cheng X Q, Yang T, Yin G P, Shi P F. Numerical Simula-tion of the Ordered Catalyst Layer in Cathode of Proton Exchange Membrane Fuel Cells[J]. Electrochem. Commun., 2005,7(12):1411-1416. doi: 10.1016/j.elecom.2005.09.022

    22. [22]

      Bonnefont A, Ruvinskiy P, Rouhet M, Orfanidi A, Neophytides S, Savinova E. Advanced Catalytic Layer Architectures for Polymer Electrolyte Membrane Fuel Cells[J]. WIREs Energy Environ., 2014,3(5):505-521. doi: 10.1002/wene.110

    23. [23]

      Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z T, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X. A. Highly Order -Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra-Low Pt Loading PEM Fuel Cells[J]. Adv. Energy Mater., 2011,1(6):1205-1214. doi: 10.1002/aenm.201100371

    24. [24]

      Du S F. A Facile Route for Polymer Electrolyte Membrane Fuel Cell Electrodes with In Situ Grown Pt Nanowires[J]. J. Power Sources, 2010,195(1):289-292. doi: 10.1016/j.jpowsour.2009.06.091

    25. [25]

      Su K H, Sui S, Yao X Y, Wei Z X, Zhang J L, Du S F. Controlling Pt Loading and Carbon Matrix Thickness for a High Performance Pt-Nanowire Catalyst Layer in PEMFCs[J]. Int. J. Hydrogen Energy, 2014,39(7):3397-3403. doi: 10.1016/j.ijhydene.2013.12.062

    26. [26]

      Wei Z X, He A, Su K H, Sui S.. Carbon Matrix Effects on the Micro-Structure and Performance of Pt Nanowire Cathode Prepared by Decal Transfer Method.[J]. J. Energy Chem, 2015,24(2):213-218. doi: 10.1016/S2095-4956(15)60303-5

    27. [27]

      Jana N R, Gearheart L, Murphy C J.. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles[J]. Chem. Mater., 2001,13(7):2313-2322. doi: 10.1021/cm000662n

    28. [28]

      Zhao X J, Luo X J, Bazuin C G, Masson J F. In Situ Growth of AuNPs on Glass Nanofibers for SERS Sensors[J]. ACS Appl. Mater. Interfaces, 2020,12(49):55349-55361. doi: 10.1021/acsami.0c15311

    29. [29]

      Kuttner C, Mayer M, Dulle M, Moscoso A, López-Romero J M, Förster S, Fery A, Pérez-Juste J, Contreras -Cáceres R. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analy-sis, and SERS Performance[J]. ACS Appl. Mater. Interfaces, 2018,10(13):11152-11163. doi: 10.1021/acsami.7b19081

    30. [30]

      Tangeysh B, Tibbetts K M, Odhner J H, Wayland B B, Levis R J. Gold Nanotriangle Formation through Strong-Field Laser Processing of Aqueous KAuCl4 and Postirradiation Reduction by Hydrogen Per-oxide[J]. Langmuir, 2017,33(1):243-252. doi: 10.1021/acs.langmuir.6b03812

    31. [31]

      Ooi M J, Aziz A A. Seed -Mediated Grown Platinum Nanocrystal: A Correlation between Seed Volume and Catalytic Performance of For-mic Acid and Ethanol Oxidation[J]. Int. J. Hydrogen Energy, 2017,42(14):9063-9068. doi: 10.1016/j.ijhydene.2016.06.032

    32. [32]

      Lu Y X, Du S F, Steinberger-Wilckens R. Three-Dimensional Cata-lyst Electrodes Based on PtPd Nanodendrites for Oxygen Reduction Reaction in PEFC Applications[J]. Appl. Catal. B, 2016,187:108-114. doi: 10.1016/j.apcatb.2016.01.019

    33. [33]

      Wang R Q, Cao X L, Sui S, Li B, Li Q F. Study on the Growth of Plat-inum Nanowires as Cathode Catalysts in Proton Exchange Membrane fuel cells[J]. Front. Chem. Sci. Eng., 2022,16:364-375. doi: 10.1007/s11705-021-2052-z

    34. [34]

      Berhault G, Bausach M, Bisson L, Becerra L, Thomazeau C, Uzio D.. Seed-Mediated Synthesis of Pd Nanocrystals: Factors Influencing a Kinetic-or Thermodynamic -Controlled Growth Regime[J]. J. Phys. Chem. C, 2007,111(16):5915-5925. doi: 10.1021/jp0702752

    35. [35]

      Lee E P, Chen J Y, Yin Y D, Campbell C T, Xia Y N. Pd-Catalyzed Growth of Pt Nanoparticles or Nanowires as Dense Coatings on Poly-meric and Ceramic Particulate Supports[J]. Adv. Mater., 2006,18(24):3271-3274. doi: 10.1002/adma.200601070

    36. [36]

      Du S F, Pollet B G.. Catalyst Loading for Pt -Nanowire Thin Film Electrodes in PEFCs[J]. Int. J. Hydrogen Energy, 2012,37(23):17892-17898. doi: 10.1016/j.ijhydene.2012.08.148

    37. [37]

      Zheng J, Zhou S Y, Gu S, Xu B J, Yan Y S. Size-Dependent Hydro-gen Oxidation and Evolution Activities on Supported Palladium Nanoparticles in Acid and Base[J]. J. Electrochem. Soc., 2016,163(6):F499-F506. doi: 10.1149/2.0661606jes

    38. [38]

      Lee W J, Bera S, Shin H C, Hong W P, Oh S J, Wan Z X, Kwon S H. Uniform and Size-Controlled Synthesis of Pt Nanoparticle Catalyst by Fluidized Bed Reactor Atomic Layer Deposition for PEMFCs[J]. Adv. Mater. Interfaces, 2019,6(21)1901210. doi: 10.1002/admi.201901210

    39. [39]

      Lee W J, Bera S, Woo H J, Ahn J W, Bae J S, Oh I K, Kwon S H. Controllable Size and Crystallinity of Ru Nanoparticles on Carbon Support by Fluidized Bed Reactor-Atomic Layer Deposition for Enhanced Hydrogen Oxidation Activity[J]. J. Mater. Chem. A, 2021,9:17223-17230. doi: 10.1039/D1TA03678E

    40. [40]

      Hou Y Z, Deng H, Pan F W, Chen W M, Du Q, Jiao K.. Pore-Scale Investigation of Catalyst Layer Ingredient and Structure Effect in Proton Exchange Membrane Fuel Cell[J]. Appl. Energy, 2019,253113561. doi: 10.1016/j.apenergy.2019.113561

    41. [41]

      Lu Y X, Du S F, Steinberger -Wilckens R.. Temperature-Controlled Growth of Single -Crystal Pt Nanowire Arrays for High Performance Catalyst Electrodes in Polymer Electrolyte Fuel Cells[J]. Appl. Catal. B, 2015,164:389-395. doi: 10.1016/j.apcatb.2014.09.040

    42. [42]

      Baricci A, Bonanomi M, Yu H, Guetaz L, Maric R, Casalegno A. Modelling Analysis of Low Platinum Polymer Fuel Cell Degradation under Voltage Cycling: Gradient Catalyst Layers with Improved Durability[J]. J. Power Sources, 2018,405:89-100. doi: 10.1016/j.jpowsour.2018.09.092

    43. [43]

      Thanh N T, Maclean N, Mahiddine S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution[J]. Chem. Rev., 2014,114(15):7610-7630. doi: 10.1021/cr400544s

    44. [44]

      Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michae-lides A. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations[J]. Chem. Rev., 2016,116(12):7078-7116. doi: 10.1021/acs.chemrev.5b00744

    45. [45]

      Chayen N E. Methods for Separating Nucleation and Growth in Protein Crystallization[J]. Prog. Biophys. Mol. Biol., 2005,88(3):329-337. doi: 10.1016/j.pbiomolbio.2004.07.007

    46. [46]

      Nikoobakht B, El-Sayed M A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method[J]. Chem. Mater., 2003,15(10):1957-1962. doi: 10.1021/cm020732l

    47. [47]

      Xiong Y, Xiao L, Yang Y, DiSalvo F J, Abruña H D. High-Loading Intermetallic Pt3 Co/C Core-Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR)[J]. Chem. Mater., 2018,30(5):1532-1539. doi: 10.1021/acs.chemmater.7b04201

    48. [48]

      Wang L, Wang H J, Nemoto Y, Yamauchi Y. Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid[J]. Chem. Mater., 2010,22(9):2835-2841. doi: 10.1021/cm9038889

    49. [49]

      Su K H, Yao X Y, Sui S, Wei Z X, Zhang J L, Du S F. Matrix Material Study for In Situ Grown Pt Nanowire Electrocatalyst Layer in Proton Exchange Membrane Fuel Cells (PEMFCs)[J]. Fuel Cells, 2015,15(3):449-455. doi: 10.1002/fuce.201400168

  • 加载中
    1. [1]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    2. [2]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    3. [3]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    6. [6]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    7. [7]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    8. [8]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    9. [9]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    12. [12]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    13. [13]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    14. [14]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    15. [15]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    18. [18]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    19. [19]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    20. [20]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

Metrics
  • PDF Downloads(3)
  • Abstract views(398)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return