Citation: Yan-Qiong SHEN, Yun-Chao GENG, Jian-Bo WANG, Xue FAN, Qi-Peng LI. Preparation of R6G@γ-CD-MOFs Composites with Application in Sensing of Fe3+ Ion[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 800-804. doi: 10.11862/CJIC.2022.100 shu

Preparation of R6G@γ-CD-MOFs Composites with Application in Sensing of Fe3+ Ion

  • Corresponding author: Qi-Peng LI, qpli@ztu.edu.cn
  • Received Date: 2 July 2021
    Revised Date: 9 March 2022

Figures(4)

  • γ-CD-MOFs were synthesized with γ-cyclodextrin (γ-CD), potassium hydroxide, methanol, and water, whose structure, stability, and morphology were characterized by X-ray diffraction, thermogravimetric analysis, and scanning electron microscope. Due to γ- CD- MOFs having a 1D channel, rhodamine 6G (R6G) with yellow light emission was introduced into the channel, to obtain a fluorescent composite R6G@γ-CD-MOFs and its fluorescence response to different metal ions was explored. The experimental results show that R6G@γ-CD-MOFs can selectively sense Fe3+ ions from 12 kinds of metal ions, and its fluorescence quenching constant (Ksv) was 1.03×104 L·mol-1 in a range of 2×10-4-2.0×10-2 mol·L-1.
  • 加载中
    1. [1]

      Amirzehni M, Hassanzadeh J, Vahid B. Surface Imprinted CoZn-Bimetallic MOFs as Selective Colorimetric Probe: Application for Detection of Dimethoate[J]. Sens. Actuators B, 2020,325128768. doi: 10.1016/j.snb.2020.128768

    2. [2]

      Lv R, Li H, Su J, Fu X, Yang B Y, Liu X. Zinc Metal-Organic Frame-work for Selective Detection and Differentiation of Fe and Cr Ions in Aqueous Solution[J]. Inorg. Chem., 2017,56(20):12348-12356. doi: 10.1021/acs.inorgchem.7b01822

    3. [3]

      Li Y W, Li J, Wan X Y, Sheng D F, Yan H, Zhang S S, Ma Y H, Wang S N, Li D C.. Nanocage-Based N-Rich Metal-Organic Frame-work for Luminescence Sensing toward Fe3+ and Cu2+ Ions[J]. Inorg. Chem., 2021,60(2):671-681. doi: 10.1021/acs.inorgchem.0c02629

    4. [4]

      Chen Y, Zhao J, Zhang J H, Li J, Du P Y, Lu X Q. Integration of Rho-damine B into Zirconium-Based Metal-Organic Framework for Selec-tive Detection of Ferric Ion[J]. Chinese J. Anal. Chem., 2021,49(4):642-651.

    5. [5]

      Luo Y H, Xie A D, Hu M G, Wu J, Zhang E D, Lan Y Q. Assembly of Two Mesoporous Anionic Metal-Organic Frameworks for Fluorescent Sensing of Metal Ions and Organic Dyes Separation[J]. Inorg. Chem., 2021,60(1):167-174. doi: 10.1021/acs.inorgchem.0c02760

    6. [6]

      Deng L M, Zhang Y W, Zhang D, Jiao S S, Xu J X, Liu K, Wang L. Two Exceptionally Stable Luminescent MOFs for the Selective and Sensitive Detection of Fe3+ Ions in Aqueous Solution[J]. CrystEngComm, 2019,21:6056-6062. doi: 10.1039/C9CE01166H

    7. [7]

      Wang J H, Fan Y D, Lee H W, Yi C Q, Cheng C M, Zhao X, Yang M.. Ultrasmall Metal-Organic Framework Zn-MOF-74 Nanodots: Size- Controlled Synthesis and Application for Highly Selective Colorimet-ric Sensing of Iron in Aqueous Solution[J]. ACS Appl. Nano Mater., 2018,1(7):3747-3753. doi: 10.1021/acsanm.8b01083

    8. [8]

      Zhang Q S, Wang J, Kirillov A M, Dou W, Xu C, Xu C L, Yang L Z, Fang R, Liu W S.. Multifunctional Ln-MOF Luminescent Probe for Efficient Sensing of Fe3+, Ce3+, and Acetone[J]. ACS Appl. Mater. Interfaces, 2018,10(28):23976-23986. doi: 10.1021/acsami.8b06103

    9. [9]

      Zhang B, Zhang S H, Liu B, Yue F K, Hou L, Wang Y Y. Stable Indium-Pyridylcarboxylate Framework: Selective Gas Capture and Sensing of Fe3+ Ion in Water[J]. Inorg. Chem., 2018,57(24):15262-15269. doi: 10.1021/acs.inorgchem.8b02554

    10. [10]

      Xue Z Z, Guan Q W, Xu L, Meng X D, Pan J. A Zn-Based Coordi-nation Polymer Featuring Selective Detection of Fe3+ and Efficient Capture of Anionic Dyes[J]. Cryst. Growth Des., 2020,20(11):7477-7483. doi: 10.1021/acs.cgd.0c01151

    11. [11]

      Smaldone R A, Forgan R S, Furukawa H, Gassensmith J J, Slawin A M Z, Yaghi O M, Stoddart J F. Metal-Organic Frameworks from Edi-ble Natural Products[J]. Angew. Chem. Int. Ed., 2010,49(46):8630-8634. doi: 10.1002/anie.201002343

    12. [12]

      Furukawa Y, Ishiwata T, Sugikawa K, Kokado K, Sada K. Nano-and Microsized Cubic Gel Particles from Cyclodextrin Metal-Organic Frameworks[J]. Angew. Chem. Int. Ed., 2012,124(42):10718-10721. doi: 10.1002/ange.201204919

    13. [13]

      Forgan R S, Smaldone R A, Gassensmith J J, Furukawa H, Cordes D B, Li Q W, Wilmer C E, Botros Y Y, Snurr R Q, Slawin A M Z, Stoddart J F. Nanoporous Carbohydrate Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2012,134(1):406-417. doi: 10.1021/ja208224f

    14. [14]

      Hartlieb K J, Holcroft J M, Moghadam P Z, Vermeulen N A, Algaradah M M, Nassar M S, Botros Y Y, Snurr R Q, Stoddart J F. CD-MOF: A Versatile Separation Medium[J]. J. Am. Chem. Soc., 2016,138(7):2292-2301. doi: 10.1021/jacs.5b12860

    15. [15]

      Wang W L, Wang Z F, Liu J J, Peng Y K, Yu X Y, Wang W X, Zhang Z G, Sun L Y. One-Pot Facile Synthesis of Graphene Quan-tum Dots from Rice Husks for Fe3+ Sensing[J]. Ind. Eng. Chem. Res., 2018,57(28):9144-9150. doi: 10.1021/acs.iecr.8b00913

    16. [16]

      Chen Y F, Yu B, Cui Y D, Xu S J, Gong J B. Core-Shell Structured Cyclodextrin Metal-Organic Frameworks with Hierarchical Dye Encapsulation for Tunable Light Emission[J]. Chem. Mater., 2019,31(4):1289-1295. doi: 10.1021/acs.chemmater.8b04126

    17. [17]

      Liu X Y, Xing K, Li Y, Tsung C K, Li J. Three Models to Encapsu-late Multicomponent Dyes into Nanocrystal Pores: A New Strategy for Generating High-Quality White Light[J]. J. Am. Chem. Soc., 2019,141(37):14807-14813. doi: 10.1021/jacs.9b07236

    18. [18]

      Yang L, Dou Y, Qin L, Chen L L, Xu M Z, Kong C, Zhang D P, Zhou Z, Wang S N. A Lanthanide-Containing Coordination Polymer Using Tetraphenylethene-Based Linkers with Selective Fe3+ Sensing and Efficient Iodine Adsorption Activities[J]. Inorg. Chem., 2020,59(22):16644-16653. doi: 10.1021/acs.inorgchem.0c02604

    19. [19]

      Hou B L, Tian D, Liu J, Dong L Z, Li S L, Li D S, Yan L Q. A Water-Stable Metal-Organic Framework for Highly Sensitive and Selective Sensing of Fe3+ Ion[J]. Inorg. Chem., 2016,55(20):10580-10586. doi: 10.1021/acs.inorgchem.6b01809

    20. [20]

      Yu H H, Fan M Y, Liu Q, Su Z M, Li X, Pan Q Q, Hu X L.. Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe3+, Cr2O72-/CrO42- in a Water Environment[J]. Inorg. Chem., 2020,59(3):2005-2010. doi: 10.1021/acs.inorgchem.9b03364

    21. [21]

      Wang F Q, Zhang F X, Zhao Z R, Sun Z Y, Pu Y Y, Wang Y J, Wang X Q. Multifunctional MOF-Based Probes for Efficient Detec-tion and Discrimination of Pb2+, Fe3+ and Cr2O72-/CrO42-[J]. Dalton Trans., 2021,50:12197-12207. doi: 10.1039/D1DT01446C

    22. [22]

      Guo L, Liu Y, Kong R M, Chen G, Liu Z, Qu F L, Xia L, Tan W H. A Metal-Organic Framework as Selectivity Regulator for Fe3+ and Ascorbic Acid Detection[J]. Anal. Chem., 2019,91(19):12453-12460. doi: 10.1021/acs.analchem.9b03143

    23. [23]

      Zhong F Y, Zhang X, Zheng C Q, Xu H, Gao J K, Xu S Q. A Fluores-cent Titanium-Based Metal-Organic Framework Sensor for Nitroaro-matics and Nanomolar Fe3+ Detection[J]. J. Solid State Chem, 2020,288121391. doi: 10.1016/j.jssc.2020.121391

    24. [24]

      Wu N, Guo H, Wang X Q, Sun L, Zhang T T, Peng L P, Yang W.. A Water-Stable Lanthanide-MOF as a Highly Sensitive and Selective Luminescence Sensor for Detection of Fe3+ and Benzaldehyde[J]. Colloids Surf. A, 2021,616126093. doi: 10.1016/j.colsurfa.2020.126093

    25. [25]

      Li X, Tang J X, Liu H, Gao K, Meng X R, Wu J, Hou H W. A Highly Sensitive and Recyclable Ln-MOF Luminescent Sensor for the Effi-cient Detection of Fe3+ and Cr Anions[J]. Chem. Asian J., 2019,14(20):3721-3727. doi: 10.1002/asia.201900936

    26. [26]

      Zhang Y M, Yang X Y, Zhou H C. Direct Synthesis of Functional-ized PCN-333 via Linker Design for Fe3+ Detection in Aqueous Media[J]. Dalton Trans., 2018,47:11806-11811. doi: 10.1039/C8DT01508B

    27. [27]

      Li L N, Shen S S, Ai W P, Song S Y, Bai Y, Liu H W. Facilely Syn-thesized Eu3+ Post-functionalized UiO-66-Type Metal-Organic Framework for Rapid and Highly Selective Detection of Fe3+ in Aqueous Solution[J]. Sens. Actuators B, 2018,267:542-548. doi: 10.1016/j.snb.2018.04.064

    28. [28]

      Ruan B, Yang J, Zhang Y J, Ma N, Shi D A, Jiang T, Tsai F C. UiO-66 Derivate as a Fluorescent Probe for Fe3+ Detection[J]. Talanta, 2020,218121207. doi: 10.1016/j.talanta.2020.121207

    29. [29]

      Yu H H, Liu Q, Li J, Su Z M, Li X, Wang X L, Sun J, Zhou C, Hu X L.. A Dual-Emitting Mixed-Lanthanide MOF with High Water-Stability for Ratiometric Fluorescence Sensing of Fe3+ and Ascorbic Acid[J]. J. Mater. Chem. C, 2021,9:562-568. doi: 10.1039/D0TC04781C

    30. [30]

      Zhao Y M, Liu J H, Wang S, Zhai X, Shao L, Liu Y L, Zhang X M, Chen J Y, Meng F B, Fu Y. A Dual-Emissive Europium-Based Metal-Organic Framework for Selective and Sensitive Detection of Fe3+ and Fe2+[J]. Dalton Trans., 2021,50:13823-13829. doi: 10.1039/D1DT02249K

    31. [31]

      Guo X P, Pan Q W, Song X Q, Guo Q Y, Zhou S X, Qiu J R, Dong G P.. Embedding Carbon Dots in Eu3+-Doped Metal-Organic Frame-work for Label-Free Ratiometric Fluorescence Detection of Fe3+ Ions[J]. J. Am. Ceram. Soc., 2021,104(2):886-895. doi: 10.1111/jace.17477

    32. [32]

      Xu H, Gao J K, Qian X F, Wang J P, He H J, Cui Y J, Yang Y, Wang Z Y, Qian G D. Metal-Organic Framework Nanosheets for Fast-Response and Highly Sensitive Luminescent Sensing of Fe3+[J]. J. Mater. Chem. A, 2016,4:10900-10905. doi: 10.1039/C6TA03065C

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

Metrics
  • PDF Downloads(4)
  • Abstract views(663)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return