Citation: Zhen-Yu CAO, Yun WU, Jian-Hua GAO. Bi9P2O18Cl: Phase Transition and Hydrogen Production by Photocatalytic Water-Splitting[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 969-976. doi: 10.11862/CJIC.2022.099 shu

Bi9P2O18Cl: Phase Transition and Hydrogen Production by Photocatalytic Water-Splitting

  • Corresponding author: Jian-Hua GAO, gaojh@nwu.edu.cn
  • Received Date: 20 December 2021
    Revised Date: 18 March 2022

Figures(5)

  • Bi9P2O18Cl crystals were prepared by the high-temperature molten salt method. Single-crystal X-ray diffraction data analyses demonstrated that Bi9P 2O18Cl can undergo a crystal-to-crystal phase transition from room temperature to low temperature. At room temperature, this compound (α-phase) crystallizes in monoclinic space group P21/m (11) with unit cell parameters a=1.149 10(7) nm, b =0.540 64(4) nm, c=1.463 69(9) nm, β =93.741(6)°, V= 0.907 38(10) nm3. And at 100 K, it (β-phase) crystallizes in monoclinic space group P21/n (14) with unit cell parameters a=1.790 56(4) nm, b=0.538 870(10) nm, c=1.915 57(4) nm, β=103.693(2)°, V=1.795 76(6) nm3. Additionally, high pure powder samples of Bi9P2 O18Cl were synthesized using solid -state reaction method, which exhibited promising performance in photocatalytic water splitting to produce H2, the H2 evolution rates reached 33.69 µmol·g-1·h-1. CCDC: 2128785, α-phase Bi9P2O18Cl; 2145491, β-phase Bi9P2O18Cl.
  • 加载中
    1. [1]

      WANG Q, XU R, WANG X S, LIU S D, HUANG Y B, CAO R. Plati-num Nanoparticle-Decorated Porous Porphyrin-Based Metal -Organic Framework for Photocatalytic Hydrogen Production[J]. Chinese J. Inorg. Chem., 2017,33(11):2038-2044. doi: 10.11862/CJIC.2017.240

    2. [2]

      LU Y, SHANG G L, ZHANG H, WANG Y, TAN Y Y, SUN J H, LIU G X. Preparation of Carbon Self-Doping Graphic Carbon Nitride Nanosheets for Photocatalytic H2 Evolution Performance under Visible-Light Irradiation[J]. Chinese J. Inorg. Chem., 2021,37(4):668-674.  

    3. [3]

      Chu J Y, Han X J, Yu Z, Du Y C, Song B, Xu P. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/Cu7S4/g-C3N4 Ternary Heterostructures[J]. ACS Appl. Mater. Interfaces, 2018,10(24):20404-20411. doi: 10.1021/acsami.8b02984

    4. [4]

      Abe R. Recent Progress on Photocatalytic and Photoelectrochemical Water Splitting under Visible Light Irradiation[J]. J. Photochem. Photobiol. C, 2010,11(4):179-209. doi: 10.1016/j.jphotochemrev.2011.02.003

    5. [5]

      Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C C, Nakano K, Abe R, Kageyama H. Valence Band Engineering of Layered Bismuth Oxyhalides toward Stable Visible-Light Water Splitting: Madelung Site Potential Analy-sis[J]. J. Am. Chem. Soc., 2017,139(51):18725-18731. doi: 10.1021/jacs.7b11497

    6. [6]

      Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M. Zinc Germanium Oxynitride as a Photocat-alyst for Overall Water Splitting under Visible Light[J]. J. Phys. Chem. C, 2007,111(2):1042-1048. doi: 10.1021/jp0656532

    7. [7]

      Wang Q, Nakabayashi M, Hisatomi T, Sun S, Akiyama S, Wang Z, Pan Z H, Xiao X, Watanabe T, Yamada T, Shibata N, Takata T, Domen K. Oxysulfide Photocatalyst for Visible-Light-Driven Overall Water Splitting[J]. Nat. Mater., 2019,18(8):827-832. doi: 10.1038/s41563-019-0399-z

    8. [8]

      Li J, Li H, Zhan G M, Zhang L Z. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides[J]. Acc. Chem. Res., 2017,50(1):112-121. doi: 10.1021/acs.accounts.6b00523

    9. [9]

      Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R. Layered Perovskite Oxychloride Bi4 NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting[J]. J. Am. Chem. Soc., 2016,138(7):2082-2085. doi: 10.1021/jacs.5b11191

    10. [10]

      Zhong C C, Kato D, Ogawa K, Tassel C, Izumi F, Suzuki H, Kawaguchi S, Saito T, Saeki A, Abe R, Kageyama H. Bi4AO6Cl2 (A=Ba, Sr, Ca) with Double and Triple Fluorite Layers for Visible-Light Water Split-ting[J]. Inorg. Chem., 2021,60(20):15667-15674. doi: 10.1021/acs.inorgchem.1c02344

    11. [11]

      Kumar J P, Sekhar K S K R C, Rao T D, Babu P D, Tirupathi P. Effect of Sintering Temperature on Structural, Dielectric, and Elec-trical Property Studies of Bi4NdTi3FeO15 Aurivillius Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2021,32(7):9675-9684. doi: 10.1007/s10854-021-05628-9

    12. [12]

      Kusainova A M, Zhou W Z, Irvine J T S, Lightfoot P. Layered Inter-growth Phases Bi4MO 8X (X=Cl, M=Ta and X=Br, M=Ta or Nb): Structural and Electrophysical Characterization[J]. J. Solid State Chem., 2002,166(1):148-157. doi: 10.1006/jssc.2002.9572

    13. [13]

      Shivani V, Harish S, Archana J, Navaneethan M, Ponnusamy S, Hayakawa Y. Highly Efficient 3-D Hierarchical Bi2WO6 Catalyst for Environmental Remediation[J]. Appl. Surf. Sci., 2019,488:696-706. doi: 10.1016/j.apsusc.2019.05.072

    14. [14]

      Li W Q, Ding X G, Wu H T, Yang H. Bi2MoxW1-xO6 Solid Solutions with Tunable Band Structure and Enhanced Visible-Light Photocata-lytic Activities[J]. Appl. Surf. Sci., 2018,447:636-647. doi: 10.1016/j.apsusc.2018.04.039

    15. [15]

      Wei Z, Zhu Y F. Synthesis and Performance Enhancement for Bi2WO6 as High-Activity Visible -Light -Driven Photocatalysts//Yamashita H, Li H X[J]. Nanostructured Photocatalysts: Advanced Functional Materials. Switzerland: Springer, 2016:359-389.

    16. [16]

      Jiang L, Ni S, Liu G, Xu X X. Photocatalytic Hydrogen Production over Aurivillius Compound Bi3TiNbO9 and Its Modifications by Cr/Nb Co-Doping[J]. Appl. Catal. B, 2017,217:342-352. doi: 10.1016/j.apcatb.2017.06.012

    17. [17]

      Lu Y T, Pu Y F, Wang J, Qin C X, Chen C L, Seo H J. On Structure and Methylene Blue Degradation Activity of an Aurivillius -Type Photocatalyst of Bi4V 2O11 Nanoparticles[J]. Appl. Surf. Sci., 2015,347:719-726. doi: 10.1016/j.apsusc.2015.04.164

    18. [18]

      Xu L, Wan Y P, Xie H D, Huang Y L, Qiao X B, Qin L, Seo H J. On Structure, Optical Properties and Photodegradated Ability of Aurivillius-Type Bi3TiNbO9 Nanoparticles[J]. J. Am. Ceram. Soc., 2016,99(12):3964-3972. doi: 10.1111/jace.14423

    19. [19]

      Ji X H, Wang Q, Lu J F, Zhang D. Optical and Photochemical Char-acteristics of Aurivillius -like Semiconductor Bi9P2O18Cl Synthe-sized via Sol-Gel-Assisted Solid-Sate Reaction[J]. Ceram. Int., 2020,46(16):25766-25774. doi: 10.1016/j.ceramint.2020.07.055

    20. [20]

      Mentre O, Abraham F. Synthesis, Crystal Structure, Infrared Charac-terization, and Electrical Properties of the New Bi9(V1-xPx)2ClO18 Series (0 ≤ x ≤ 1)[J]. J. Solid State Chem., 1998,136(1):34-45. doi: 10.1006/jssc.1997.7644

    21. [21]

      Sheldrick G M. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64(1):112-122.

    22. [22]

      Spek A L. Single-Crystal Structure Validation with the Program PLATON[J]. J. Appl. Crystallogr., 2003,36:7-13. doi: 10.1107/S0021889802022112

    23. [23]

      Kresse G, Furthmüller J. Efficiency of AbInitio Total Energy Calcu-lations for Metals and Semiconductors Using a Plane Wave Basis Set[J]. Comput. Mater. Sci., 1996,6(1):15-50. doi: 10.1016/0927-0256(96)00008-0

    24. [24]

      Blöchl P E. Projector Augmented-Wave Method[J]. Phys. Rev. B, 1994,50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953

    25. [25]

      Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approxi-mation Made Simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(1)
  • Abstract views(448)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return