Citation: Cong-Ling LI, Xiao-Yu LU. Cyanide-Bridged Bimetallic Active Site in Porous Carbon-Matrix for Oxygen Reduction Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 930-940. doi: 10.11862/CJIC.2022.098 shu

Cyanide-Bridged Bimetallic Active Site in Porous Carbon-Matrix for Oxygen Reduction Reaction

  • Corresponding author: Cong-Ling LI, conglingli@sues.edu.cn
  • Received Date: 22 October 2021
    Revised Date: 24 February 2022

Figures(8)

  • Using special compound {[Co(bpy)2]3[Fe(CN) 6]2}[Fe(CN)6]1/3 as a precursor, an ordered mesoporous Fe-Co- N-doped graphite - based catalyst (Fe-Co-N-GC) with the embedding Fe—N, Co— N, and Fe—C≡N —Co active sites was prepared by a nano-casting technique. Together with the high surface area and graphitization degree, the catalytic performance of Fe-Co-N-GC for oxygen reduction reaction (ORR) was remarkably enhanced. This Fe-Co-based bimetallic catalyst also exhibited superior durability and good tolerance to methanol in ORR.
  • 加载中
    1. [1]

      Wu G, More K L, Johnston C M, Zelenay P. High-Performance Elec-trocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt[J]. Science, 2011,332:443-447. doi: 10.1126/science.1200832

    2. [2]

      Li C L, Wu M C, Liu R. High-Performance Bifunctional Oxygen Elec-trocatalysts for Zinc-Air Batteries over Mesoporous Fe/Co-NC Manofi-bers with Embedding FeCo Alloy Nanoparticles[J]. Appl. Catal. B, 2019,244:150-158. doi: 10.1016/j.apcatb.2018.11.039

    3. [3]

      Sgarbi R, Kumar K, Jaouen F, Zitolo A, Ticianelli E A, Maillard F. Oxygen Reduction Reaction Mechanism and Kinetics on M-NxCy and M@NC Active Sites Present in Model MNC Catalysts under Alkaline and Acidic Conditions[J]. J. Solid State Electrochem., 2021,25:45-56. doi: 10.1007/s10008-019-04436-w

    4. [4]

      Han J X, Bao H L, Wang J Q, Zheng L R, Sun S R, Wang Z L, Sun C W. 3d N-Doped Ordered Mesoporous Carbon Supported Single-Atom Fe-NC Catalysts with Superior Performance for Oxygen Reduction Reaction and Zinc-Air Battery[J]. Appl. Catal. B, 2021,280119411. doi: 10.1016/j.apcatb.2020.119411

    5. [5]

      Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells[J]. Science, 2009,324:71-74. doi: 10.1126/science.1170051

    6. [6]

      Bashyam R, Zelenay P. A Class of Non-precious Metal Composite Cat-alysts for Fuel Cells[J]. Nature, 2006,443:63-66. doi: 10.1038/nature05118

    7. [7]

      Li S, Zhang L, Kim J, Pan M, Shi Z, Zhang J J. Synthesis of Carbon-Supported Binary FeCo -N Non -noble Metal Electrocatalysts for the Oxygen Reduction Reaction[J]. Electrochim. Acta, 2010,55:7346-7353. doi: 10.1016/j.electacta.2010.07.020

    8. [8]

      Wu G, Chen Z W, Artyushkova K, Garzon F H, Zelenay P. Polyaniline-Derived Non -precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode[J]. ECS Trans., 2008,16:159-170.

    9. [9]

      Palaniselvam T, Kashyap V, Bhange S N, Baek J B, Kurungot S. Nano-porous Graphene Enriched with Fe/Co-N Active Sites as a Promis-ing Oxygen Reduction Electrocatalyst for Anion Exchange Membrane Fuel Cells[J]. Adv. Funct. Mater., 2016,26:2150-2162. doi: 10.1002/adfm.201504765

    10. [10]

      Bambagioni V, Bianchini C, Filippi J, Lavacchi , A , Oberhauser W, Marchionni A, Sordelli L. Single-Site and Nanosized Fe-Co Electro-catalysts for Oxygen Reduction: Synthesis, Characterization and Cat-alytic Performance[J]. J. Power Sources, 2011,196:2519-2529. doi: 10.1016/j.jpowsour.2010.11.030

    11. [11]

      Zhang R Z, He S J, Lu Y Z, Chen W. Fe, Co, N-Functionalized Car-bon Nanotubes In Situ Grown on 3D Porous N-Doped Carbon Foams as a Noble Metal-Free Catalyst for Oxygen Reduction[J]. J. Mater. Chem. A, 2015,3:3559-3567. doi: 10.1039/C4TA05735J

    12. [12]

      Li B S, Zhang L L, Chen L W, Cai X Y, Lai L F, Wang Z, Shen Z X, Lin J Y. Graphene-Supported Non -precious Metal Electrocatalysts for Oxygen Reduction Reactions: The Active Center and Catalytic Mechanism[J]. J. Mater. Chem. A, 2016,4:7148-7154. doi: 10.1039/C6TA00555A

    13. [13]

      Ghanbarlou H, Rowshanzamir S, Kazeminasab B, Parnian M J. Non-Precious Metal Nanoparticles Supported on Nitrogen-Doped Gra-phene as a Promising Catalyst for Oxygen Reduction Reaction: Syn-thesis, Characterization and Electrocatalytic Performance[J]. J. Power Sources, 2015,273:981-989. doi: 10.1016/j.jpowsour.2014.10.001

    14. [14]

      Cheon J Y, Kim T, Choi Y M, Jeong H Y, Kim M G, Sa Y J, Joo S H. Ordered Mesoporous Porphyrinic Carbons with Very High Electro-catalytic Activity for the Oxygen Reduction Reaction[J]. Sci. Rep., 2013,3:1-8.

    15. [15]

      Berlinguette C P, Dragulescu-Andrasi A, Sieber A, Güdel H U, Achim C, Dunbar K R. A Charge -Transfer-Induced Spin Transition in a Discrete Complex: The Role of Extrinsic Factors in Stabilizing Three Electronic Isomeric Forms of a Cyanide-Bridged Co/Fe Cluster[J]. J. Am. Chem. Soc., 2005,127:6766-6779. doi: 10.1021/ja043162u

    16. [16]

      Chokai M, Taniguchi M, Moriya S, Matsubayashi K, Shinoda T, Nabae Y, Miyata S. Preparation of Carbon Alloy Catalysts for Poly-mer Electrolyte Fuel Cells from Nitrogen-Containing Rigid-Rod Poly-mers[J]. J. Power Sources, 2010,195:5947-5951. doi: 10.1016/j.jpowsour.2010.01.012

    17. [17]

      Hu Y, Zhao X, Huang Y J, Li Q F, Bjerrum N J, Liu C P, Xing W. Synthesis of Self-Supported Non -precious Metal Catalysts for Oxy-gen Reduction Reaction with Preserved Nanostructures from the Polyaniline Nanofiber Precursor[J]. J. Power Sources, 2013,225:129-136. doi: 10.1016/j.jpowsour.2012.10.013

    18. [18]

      Zhu C Z, Shi Q R, Xu B Z, Fu S F, Wan G, Yang C, Yao S Y, Song J H, Zhou H, Du D, Beckman S P, Su D, Lin Y H. Hierarchically Porous M-N-C (M=Co and Fe) Single -Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance[J]. Adv. Energy Mater., 2018,81801956. doi: 10.1002/aenm.201801956

    19. [19]

      Wang Y Y, Kumar A, Ma M, Jia Y, Wang Y, Zhang Y, Zhang G X, Sun X M, Yan Z F. Hierarchical Peony-like FeCo -NC with Conduc-tive Network and Highly Active Sites as Efficient Electrocatalyst for Rechargeable Zn-Air Battery[J]. Nano Res., 2020,13:1090-1099. doi: 10.1007/s12274-020-2751-7

    20. [20]

      Chen G B, Liu P, Liao Z Q, Sun F F, He Y H, Zhong H X, Zhang T, Zschech E, Chen M W, Wu G, Zhang J, Feng X L. Zinc-Mediated Template Synthesis of Fe-N-C Electrocatalysts with Densely Accessi-ble Fe-Nx Active Sites for Efficient Oxygen Reduction[J]. Adv. Mater., 2020,321907399. doi: 10.1002/adma.201907399

    21. [21]

      Hu X, Min Y, Ma L L, Lu J Y, Li H C, Liu W J, Chen J J, Yu H Q. Iron-Nitrogen Doped Carbon with Exclusive Presence of FexN Active Sites as an Efficient ORR Electrocatalyst for Zn-Air Battery[J]. Appl. Catal. B, 2020,268118405. doi: 10.1016/j.apcatb.2019.118405

    22. [22]

      Zhang X R, Mollamahale Y B, Lyu D D, Liang L Z, Yu F, Qing M, Du Y H, Zhang X Y, Tian Z Q, Shen P K. Molecular-Level Design of Fe-NC Catalysts Derived from Fe-Dual Pyridine Coordination Com-plexes for Highly Efficient Oxygen Reduction[J]. J. Catal., 2019,372:245-257. doi: 10.1016/j.jcat.2019.03.003

    23. [23]

      Chen X, Fan K C, Zong L B, Zhang Y W, Feng D, Hou M Y, Zhang Q, Zheng D H, Chen Y A, Wang L. Fe, N-Decorated Three Dimen-sion Porous Carbonaceous Matrix for Highly Efficient Oxygen Reduction Reaction[J]. Appl. Surf. Sci., 2020,505144635. doi: 10.1016/j.apsusc.2019.144635

    24. [24]

      Lyu D D, Du Y H, Huang S L, Mollamahale B Y, Zhang X R, Hasan S W, Yu F, Wang S B, Tian Z Q, Shen P K. Highly Efficient Multi-functional Co -N-C Electrocatalysts with Synergistic Effects of Co-N Moieties and Co Metallic Nanoparticles Encapsulated in a N-Doped Carbon Matrix for Water -Splitting and Oxygen Redox Reactions[J]. ACS Appl. Mater. Interfaces, 2019,11:39809-39819. doi: 10.1021/acsami.9b11870

    25. [25]

      Wang D, Yang P X, Xu H, Ma J Y, Du L, Zhang G X, Li R P, Jiang Z, Li Y, Zhang J Q, An M Z. The Dual-Nitrogen-Source Strategy to Modulate a Bifunctional Hybrid Co/Co-N-C Catalyst in the Revers-ible Air Cathode for Zn -Air Batteries[J]. J. Power Sources, 2021,485229339. doi: 10.1016/j.jpowsour.2020.229339

    26. [26]

      Xiang Z H, Xue Y H, Cao D P, Huang L, Chen J F, Dai L M. Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Cova-lent Organic Polymers Complexed with Non-precious Metals[J]. Angew. Chem. Int. Ed., 2014,53:2433-2437. doi: 10.1002/anie.201308896

    27. [27]

      Ding R, Qi L, Jia M J, Wang H Y. Facile Synthesis of Mesoporous Spinel NiCo2O4 Nanostructures as Highly Efficient Electrocatalysts for Urea Electro-oxidation[J]. Nanoscale, 2014,6:1369-1376. doi: 10.1039/C3NR05359H

    28. [28]

      Mofokeng T P, Tetana Z N, Ozoemena K I. Ozoemena K I[J]. Defective 3D Nitrogen-Doped Carbon Nanotube -Carbon Fibre Networks for High-Performance Supercapacitor: Transformative Role of Nitrogen-Doping from Surface -Confined to Diffusive Kinetics. Carbon, 2020,169:312-326.

    29. [29]

      Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J]. Science, 1998,279:548-552. doi: 10.1126/science.279.5350.548

    30. [30]

      Sing K S W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity[J]. Pure Appl. Chem., 1985,57:603-619. doi: 10.1351/pac198557040603

    31. [31]

      Wang X Q, Liang C D, Dai S. Facile Synthesis of Ordered Mesopo-rous Carbons with High Thermal Stability by Self-Assembly of Resorcinol-Formaldehyde and Block Copolymers under Highly Acid-ic Conditions[J]. Langmuir, 2008,24:7500-7505. doi: 10.1021/la800529v

    32. [32]

      Yang G G, Zhu J W, Yuan P F, Hu Y F, Qu G, Lu B A, Xue X Y, Yin H B, Cheng W Z, Cheng J Q, Xu W J, Li J, Hu J S, Mu S C, Zhang J N. Regulating Fe-Spin State by Atomically Dispersed Mn-N in Fe-NC Catalysts with High Oxygen Reduction Activity[J]. Nat. Commun., 2021,12:1-10. doi: 10.1038/s41467-020-20314-w

    33. [33]

      Wu N, Zhai M X, Chen F, Zhang X, Guo R H, Hu T P, Ma M M. Nickel Nanocrystal/Nitrogen-Doped Carbon Composites as Efficient and Carbon Monoxide-Resistant Electrocatalysts for Methanol Oxida-tion Reactions[J]. Nanoscale, 2020,12:21687-21694. doi: 10.1039/D0NR04822D

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(1)
  • Abstract views(323)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return