Citation: Yan LIU, Xin-Yan LÜ, Fu-Wei YANG, Kun ZHANG, Lu YANG, Man-Li SUN, Li-Qin WANG. Application of Inorganic Materials in Consolidation of Bone Relics[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 777-786. doi: 10.11862/CJIC.2022.095 shu

Application of Inorganic Materials in Consolidation of Bone Relics

  • Corresponding author: Fu-Wei YANG, yangfuwei@nwu.edu.cn
  • Received Date: 1 January 2022
    Revised Date: 16 March 2022

Figures(12)

  • Traditionally, synthetic polymers are widely adopted in the consolidation of bone relics. However, organic materials are insufficient in weather resistance and compatibility with bone relics. For the past few years, more and more attention has been paid to inorganic protective materials because of their good weatherability and compatibility. In this paper, the characteristics, the consolidating mechanism, and the research actuality of inorganic protective materials are reviewed.
  • 加载中
    1. [1]

      Reiche I, Lebon M, Chadefaux C. Microscale Imaging of the Preserva- tion State of 5 000 - Year - Old Archaeological Bones by Synchrotron Infrared Microspectroscopy[J]. Anal. Bioanal. Chem., 2010,397(6):2491-2499. doi: 10.1007/s00216-010-3795-4

    2. [2]

      Lézine A M, Robert C, Cleuziou S. Climate Change and Human Occu- pation in the Southern Arabian Lowlands during the Last Deglaciation and the Holocene[J]. Global Planet. Change, 2010,72(4):412-28. doi: 10.1016/j.gloplacha.2010.01.016

    3. [3]

      Lyman R L. Human Behavioral and Paleoecological Implications of Terminal Pleistocene Fox Remains at the Marmes Site (45FR50), Eastern Washington State, USA[J]. Quat. Sci. Rev., 2012,41:39-48. doi: 10.1016/j.quascirev.2012.03.009

    4. [4]

      Tomassetti M, Marini F, Campanella L. Study of Modern or Ancient Collagen and Human Fossil Bones from an Archaeological Site of Mid- dle Nile by Thermal Analysis and Chemometrics[J]. Microchem. J., 2013,108:7-13. doi: 10.1016/j.microc.2012.11.006

    5. [5]

      Oyen M L, Ferguson V L, Bembey A K, Bushby A J, Boyde A. Com- posite Bounds on the Elastic Modulus of Bone[J]. J. Biomech., 2018,41(11):2585-2588.

    6. [6]

      Johnson J S. Consolidation of Archaeological Bone: A Conservation Perspective[J]. J. Field Archaeol., 1994,21(2):221-223.

    7. [7]

      Chengdu Institute of Archaeology of Cultural Relics. Silicone Material was Used for Storage and Protection of Ivory Vessels Unearthed from Jinsha Site[J]. China Cultural Heritage, 2004,327.

    8. [8]

      Turner - Walker G. The Mechanical Properties of Artificially Aged Bone: Probing the Nature of the Collagen-Mineral Bond[J]. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011,310(1/2):17-722.

    9. [9]

      WANG L. Ancient Ivory Relics in China and Their Conservation Sig- nificance[J]. China Cultural Heritage Scientific Research, 2007,2:58-61.  

    10. [10]

      ZHANG Y W, CAO J X. Backfill, for Better Protection. Wen Hui Bao, 2003-05-23(9).

    11. [11]

      XIAO L, BAI Y L, SUN J. Cleaning, Reinforcement and Conserva- tion of Ivory unearthed from Jinsha site[J]. Sciences of Conservation and Archaeology, 2004,16(3):24-28. doi: 10.3969/j.issn.1005-1538.2004.03.005

    12. [12]

      Chadefaux C, Vignaud C, Menu M. Effects and Efficiency of Consoli- dation Treatments on Palaeolithic Reindeer Antler Multi-analytical Study by Means of XRD, FT-IR Microspectroscopy, SEM, TEM and µ-PIXE/PIGE Analyses.[J]. Appl. Phys. A, 2008,92(1):171-177. doi: 10.1007/s00339-008-4469-3

    13. [13]

      Larkin N R. Literally a' Mammoth Task': The Conservation, Prepa- ration and Curation of the West Runton Mammoth Skeleton[J]. Quatern. Int., 2010,228(1/2):233-240.

    14. [14]

      LIU X Q. Overview of Excavated Bone Relics Protection Status[J]. Tourism Overview, 2012,2178.  

    15. [15]

      Poli T, Toniolo L, Sansonetti A. Durability of Protective Polymers: The Effect of UV and Thermal Ageing[J]. Macromol. Symp, 2006,238(1):78-83. doi: 10.1002/masy.200650611

    16. [16]

      Lazzari M, Ledo - Suárez A, López T. Plastic Matters: An Analytical Procedure to Evaluate the Degradability of Contemporary Works of Art[J]. Anal. Bioanal. Chem., 2011,399(9):2939-2948. doi: 10.1007/s00216-011-4664-5

    17. [17]

      Lazzari M, Scalarone D, Malucelli G. Durability of Acrylic Films from Commercial Aqueous Dispersion: Glass Transition Tempera- ture and Tensile Behavior as Indexes of Photooxidative Degradation[J]. Prog. Org. Coat., 2011,70(2/3):116-121.

    18. [18]

      Cappitelli F, Sorlini C. Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage[J]. Appl. Environ. Microbiol., 2008,74(3):564-569. doi: 10.1128/AEM.01768-07

    19. [19]

      Baglioni M, Giorgi R, Berti D.. Smart Cleaning of Cultural Heritage: A New Challenge for Soft Nanoscience[J]. Nanoscale, 2012,4(1):42-53. doi: 10.1039/C1NR10911A

    20. [20]

      ZHANG B J, WEI G F, YANG F W. Problems and Development Trend in the Research of Immovable Materials for Conservation of Cultural Relics[J]. Sciences of Conservation and Archaeology, 2010,22(4):102-109.  

    21. [21]

      France C A M, Giaccai J A, Cano N. The Effects of PVAc Treatment and Organic Solvent Removal on δ13C, δ15N, and δ18O Values of Col- lagen and Hydroxyapatite in a Modern Bone[J]. J. Archaeol. Sci., 2011,38:3387-3393. doi: 10.1016/j.jas.2011.07.024

    22. [22]

      Lopez - Polín L. Interventive Conservation Treatments (or Prepara- tion) of Pleistocene Bones: Criteria for Covering Information from the Archaeopalaeontological Record[J]. Quatern. Int., 2015,388:199-205. doi: 10.1016/j.quaint.2015.05.031

    23. [23]

      López - Polín L. Possible Interferences of Some Conservation Treat- ments with Subsequent Studies on Fossil Bones: A Conservator's Overview[J]. Quatern. Int., 2012,275:120-127. doi: 10.1016/j.quaint.2011.07.039

    24. [24]

      Fernández - Jalvo Y, Marín - Monfort M D. Experimental Taphonomy in Museums: Preparation Protocols for Skeletons and Fossil Verte- brates under the Scanning Electron Microscopy[J]. Geobios, 2008,41(1):157-181. doi: 10.1016/j.geobios.2006.06.006

    25. [25]

      Eklund J A, Thomas M G.. Assessing the Effects of Conservation Treatments on Short Sequences of DNA In Vitro[J]. J. Archaeol. Sci., 2010,37(11):2831-2841. doi: 10.1016/j.jas.2010.06.019

    26. [26]

      Gianfrate G, D'Elia M, Quarta G. Qualitative Application Based on IR Spectroscopy for Bone Sample Quality Control in Radiocarbon Dating[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2007,259(1):316-319. doi: 10.1016/j.nimb.2007.01.309

    27. [27]

      LI Y L, LING X, YANG L P, ZHAO X C, SUN M L. Application of Modern Chemical Materials in the Conservation of Archaeological Osseous Remains[J]. Polymer Materials Science & Engineering, 2021,37(2):168-175.  

    28. [28]

      WANG Y B, WANG S J, LI L, WANG X D, LI Z X. Research on Infiltration Reinforcement Mechanism and Improved Properties of Potassium Silicate for Earthen Relics Soils[J]. Rock and Soil Mechanics, 2014,3:696-704.  

    29. [29]

      LI Y M. The Modification Study of Sodium Silicate and Its Application for the Protection of Ancient Ivory. Chengdu: Chengdu University of Technology, 2007: 64

    30. [30]

      WAN M. Application Research on Impregnation Technology Used in Ancient Ivory Protection. Chengdu: Chengdu University of Technology, 2007: 47

    31. [31]

      JIN Z L, LIU D D, ZHANG Y K, CHEN G Q, XIA Y. Salt Migrations and Damage Mechanism in Cultural Heritage Objects[J]. Sciences of Conservation and Archaeology, 2007,5:102-116.  

    32. [32]

      HAN X N, HUANG X, ZHANG B J, LUO H J. Preparation of Calcium Hydroxide Nanoparticles and Their Applications in Cultural Heri- tage Conservation[J]. Chinese Journal of Nature, 2016,1:23-32.  

    33. [33]

      Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P, Luigi D. Aragonite Crystals Grown on Bones by Reaction of CO2 with Nanostructured Ca(OH)2 in the Presence of Collagen, Implications in Archaeology and Paleontology[J]. Langmuir, 2014,30(2):660-668.

    34. [34]

      Shen F H, Feng Q L, Wang C M. The Modulation of Collagen on Crystal Morphology of Calcium Carbonate[J]. J. Cryst. Growth, 2002,242(1/2):239-244.

    35. [35]

      Palazzo A, Megna B, Reiche I, Levy J. Comparative Study between Four Consolidation Systems Suitable for Archaeological Bone Arte- facts. https://www.researchgate.net/publication/308050721

    36. [36]

      YUAN G H, FANG Q K, FANG L M, CHENG Z B, ZHOU W G. Method of Repairing Bone Relic with High Strength Inorganic Fiber Material: CN202110415412.1. 2021-07-30.

    37. [37]

      GE D Y. Study on Biomimetic Reinforcement of Archaeological Bone by Microbially Induced Calcite Precipitation. Jilin: Jilin University, 2020: 64

    38. [38]

      YANG F W, LIU Y, ZHANG K, ZHOU W Q, ZHANG B J. Review of Research on Hydroxyapatite Materials Used in the Conservation of Cultural Heritage Objects[J]. Sciences of Conservation and Archaeology, 2021,33(2):105-109.  

    39. [39]

      Yang F W, Zhang B J, Liu Y, Wei G F, Zhang H, Chen W X, Xu Z D. Biomimic Conservation of Weathered Calcareous Stones by Apa- tite[J]. New J. Chem., 2011,35:887-892.

    40. [40]

      Yang F W, Liu Y, Zhu Y C, Long S J, Zuo G F, Wang C Q, Guo F, Zhang B J, Jiang S W. Conservation of Weathered Historic Sand- stone with Biomimetic Apatite[J]. Chin. Sci. Bull., 2012,57(17):2171-2176.

    41. [41]

      Dong T L, Liu Y, He L, Yang F W, Zhang K. Preparation of Hydroxy- apatite Coating for the Conservation of Gypsum Crust on Historic Limestones[J]. Mater. Lett.: X, 2021,12:100-103.

    42. [42]

      LIU X Q, FAN M, MA Z H, SU Y, ZHAO X G. Application of Colla- gen - Based Engineered Bone Tissue Scaffolding Composites for the Protection of Bone Relics[J]. Sciences of Conservation and Archaeology, 2013,25(1):68-74.  

    43. [43]

      WANG K, HU D B. Hydroxyapatite: Collagen Biomimetic Composite Material in Conservation of Tortoise Shell Relics[J]. Journal of National Museum of China, 2013(3):141-152.  

    44. [44]

      ZHEN D Q, HU Z G, YUN Y, ZHANG Y Z. Study on Preparation of Nanometer Hydroxyapatite by Hydrothermal Synthesis[J]. Cultural Relics of the East, 2019(4):120-123.

    45. [45]

      ZHEN D Q, CHEN B R, WAN L, ZHANG Y Z, YUN Y, HE Z C. Adhesive Composition for the Restoration of Bone Relics: CN201711345477.3. 2018-06-29.

    46. [46]

      GONG W. On the Applications of Nano‑hydroxyapatite in the Consolidation of Ancient Ivory and QCMD Sensors. Chengdu: South- west Jiaotong University, 2018: 65

    47. [47]

      ZHEN J, GONG W, ZHEN L, ZHOU Z R, XIAO H, LONG Y J. The Invention Relates to a Strengthening Agent for Bone Cultural Relics, a Preparation Method and a Strengthening Method for Bone Cultural Relics: CN201810354202.4. 2018-09-11.

    48. [48]

      Gong W, Yang S, Zheng L, Xiao H, Zheng J, Wu B, Zhou Z R. Consolidating Effect of Hydroxyapatite on the Ancient Ivories from Jinsha Ruins Site: Surface Morphology and Mechanical Properties Study[J]. J. Cult. Heritage, 2019:116-122.

    49. [49]

      2015-04-01. YANG F W, LIU Y. A Method for Strengthening and Protecting Weathered Bone Cultural Relics: CN201410596581. X. 2015-04-01.

    50. [50]

      Yang F W, He D C, Liu Y, Li N M, Wang Z, Ma Q, Dong G Q. Conservation of Bone Relics Using Hydroxyapatite as Protective Material[J]. Appl. Phys. A, 2016479.

    51. [51]

      LIU L X. Disease Principles of Ivory Fossils from Chengcheng and the Research on the Consolidation and Conservation[J]. Archaeology and Cultural Relics, 2014:100-103.  

    52. [52]

      Salvatore A, Vai S, Caporali S, Caramelli D, Lari M, Carretti E. Eval- uation of Diammonium Hydrogen Phosphate and Ca(OH)2 Nanoparti- cles for Consolidation of Ancient Bones[J]. J. Cult. Heritage, 2020,41:1-12.

    53. [53]

      North A, Balonis M, Kakoulli I. Biomimetic Hydroxyapatite as a New Consolidating Agent for Archaeological Bone[J]. Stud. Conserv, 2016:146-161.

    54. [54]

      Nesseri E C, Boyatzis S, Boukos N, Panagiaris G. Optimizing the Bio- mimetic Synthesis of Hydroxyapatite for the Consolidation of Bone Using Diammonium Phosphate, Simulated Body fluid, and Gelatin[J]. SN Appl. Sci., 2020,21892.

    55. [55]

      HE W J, WU L. Gypsum and Archaeology[J]. Popular Archaeology, 2018,6:28-31.  

    56. [56]

      YANG F W, LIU Y. A Method for Protecting Fragile Bone Relics Based on Calcium Sulfate Material: CN201811568543.8. 2019 -03 - 08.

    57. [57]

      Liu Y, Hu Q, Zhang K, Yang F W, Yang L, Wang L W. In ‑ Situ Growth of Calcium Sulfate Dihydrate as a Consolidating Material for the Archaeological Bones[J]. Mater. Lett., 2021,282128713.

    58. [58]

      LIU Y, YANG F W. The Invention Relates to a Reinforcement Treat- ment Method for Porous Bone and Horn Cultural Relics: CN201911073513.4. 2020-01-10.

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(22)
  • Abstract views(1164)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return