Citation: Dong-Yuan LEI, Yu-Yun LI, Zi-Rui ZHAO, Jian-Xiang DUAN, Hong LI, Ming-Wu XIANG, Jun-Ming GUO. Preparation and Lithium-Storage Performance of In-Situ Nitrogen Doped Porous Carbon/Sulfur Composite Cathodes Derived from Passiflora Edulis Peel[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 873-883. doi: 10.11862/CJIC.2022.091 shu

Preparation and Lithium-Storage Performance of In-Situ Nitrogen Doped Porous Carbon/Sulfur Composite Cathodes Derived from Passiflora Edulis Peel

Figures(10)

  • An in-situ nitrogen-doped hierarchical porous carbon material was prepared via a simultaneous activation/carbonization process using biomass passiflora edulis peel and KHCO3 as carbon source and activator, respectively. The as-prepared porous carbon was composited with elemental sulfur to obtain the porous carbon/sulfur cathode material. The phase composition, microstructure, specific surface area, and pore structure of the as-prepared materials were investigated by these characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and so on. Also, the adsorption effect of polysulfides using porous carbon as an adsorbing material was studied by UV-Vis absorption spectroscopy. The electrochemical performances of porous carbon/sulfur composite cathodes with different sulfur content from 60% to 80% were studied by galvanostatic charge/discharge test. Results showed that the asprepared material was amorphous porous carbon with a high specific surface area of 1 093 m2 ·g-1 and pore volume of 0.63 cm3·g-1. The physicochemical synergistic adsorption of polysulfides through abundant porous structure and in‑situ nitrogen doping effectively suppresses the"shuttle effect"of lithium-sulfur batteries, whilst improving the discharge capacity and cycle performance. Consequently, the porous carbon/sulfur composite cathode with a sulfur content of 60% delivered high initial discharge capacities of 1 057.7 and 763.4 mAh·g-1 at 0.05C and 0.2C, respectively. At a high current rate of 1C, a long life of 300 cycles with a capacity retention rate of 75% can be achieved.
  • 加载中
    1. [1]

      Chen L, Feng J R, Zhou H H, Fu C P, Wang G C, Yang L M, Xu C X, Chen Z X, Yang W J, Kuang Y F. Hydrothermal Preparation of Nitrogen, Boron Co-doped Curved Graphene Nanoribbons with High Dopant Amounts for High-Performance Lithium Sulfur Battery Cathodes[J]. J. Mater. Chem. A, 2017,5:7403-7415. doi: 10.1039/C7TA01265A

    2. [2]

      LIU H D, JIA G D, ZHU S, SHENG J, ZHANG Z Y, LI Y. Functionalized Carbon-Based Composite Materials for Cathode Performance of Lithium-Sulfur Batteries[J]. Acta Chim. Sinica, 2022,80(1):89-97.  

    3. [3]

      Hua W X, Li H, Pei C, Xia J Y, Sun Y F, Zhang C, Lv W, Tao Y, Jiao Y, Zhang B S, Qiao S Z, Wan Y, Yan Q H. Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries[J]. Adv. Mater., 2021,33(38)2101006. doi: 10.1002/adma.202101006

    4. [4]

      Xiang M W, Wang Y, Wu J H, Guo Y, Wu H, Zhang Y, Liu H. Natural Silk Cocoon Derived Nitrogen-Doped Porous Carbon Nanosheets for High Performance Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2017,227:7-16. doi: 10.1016/j.electacta.2016.11.139

    5. [5]

      Seh Z W, Sun Y M, Zhang Q F, Cui Y. Designing High-Energy Lithium-Sulfur Batteries[J]. Chem. Soc. Rev., 2016,45:5605-5634. doi: 10.1039/C5CS00410A

    6. [6]

      Liang J, Sun Z H, Li F, Cheng H M. Carbon Materials for Li-S Batteries: Functional Evolution and Performance Improvement[J]. Energy Storage Mater., 2016,2:76-106. doi: 10.1016/j.ensm.2015.09.007

    7. [7]

      Seo S D, Choi C H, Kim D W. Fabrication of Sulfur-Impregnated Porous Carbon Nanostructured Electrodes via Dual-Mode Activation for Lithium-Sulfur Batteries[J]. Mater. Lett., 2016,172:116-119. doi: 10.1016/j.matlet.2016.02.135

    8. [8]

      Fan L, Li Z, Kang W, Cheng B. Biomass-Derived Tube-like Nitrogen and Oxygen Dual-Doped Porous Carbon in the Sulfur Cathode for Lithium Sulfur Battery[J]. Renewable Energy, 2020,155:309-316. doi: 10.1016/j.renene.2020.03.153

    9. [9]

      XU J J, LI B, LI S M, LIU J H, YU M. Preparation and Electrochemical Performance of Sulfur/Mesoporous Carbon Composites as Cathodes for Lithium-Sulfur Batteries[J]. Chinese J. Inorg. Chem., 2015,31(10):2030-2036.  

    10. [10]

      BenÍTez A, Amaro-Gahete J, Chien Y C, Caballero Á, Morales J, Brandell D. Recent Advances in Lithium-Sulfur Batteries Using Biomass-Derived Carbons as Sulfur Host[J]. Renewable Sustainable Energy Rev., 2022,154111783. doi: 10.1016/j.rser.2021.111783

    11. [11]

      Jin B Y, Li Y, Qian J, Zhan X L, Zhang Q H. Environmentally Friendly Binders for Lithium-Sulfur Batteries[J]. ChemElectroChem, 2020,7:4158-4176. doi: 10.1002/celc.202000993

    12. [12]

      Han D D, Wang Z Y, Pan G L, Gao X P. Metal-Organic-Framework-Based Gel Polymer Electrolyte with Immobilized Anions to Stabilize a Lithium Anode for a Quasi-Solid-State Lithium-Sulfur Battery[J]. ACS Appl. Mater. Interfaces, 2019,11:18427-18435. doi: 10.1021/acsami.9b03682

    13. [13]

      CHEN F, CHENG X Q, ZHAO Z X, WANG X M. Hierarchical Porous N, P Co-doped rGO Modified Separator to Enhance the Cycling Stability of Lithium-Sulfur Batteries[J]. Acta Chim. Sinica, 2021,79(7):941-947.  

    14. [14]

      Li P Y, Deng J N, Li J, Guo J Q, Zeng M, Wang L G, Wang R, Tang M Q. Bifunctional Interlayer for Capturing Polysulfide in Li-S Battery[J]. J. Mater. Sci., 2019,54:11983-11990. doi: 10.1007/s10853-019-03755-7

    15. [15]

      LI R, SUN X G, ZOU J Y, HE Q. NMAP Interlayer for Inhibiting Shuttle Effect of Lithium-Sulfur Battery[J]. Chinese J. Inorg. Chem., 2020,36(4):673-680.  

    16. [16]

      Bai Y, Zhao Y B, Li W D, Meng L H, Bai Y P, Chen G R. Organic-Inorganic Multi-scale Enhanced Interfacial Engineering of Sulfide Solid Electrolyte in Li-S Battery[J]. Chem. Eng. J., 2020,396:125334-125343. doi: 10.1016/j.cej.2020.125334

    17. [17]

      Yao Y X, Zhang X Q, Li B Q, Yan C, Chen P Y, Huang J Q, Zhang Q. A Compact Inorganic Layer for Robust Anode Protection in Lithium-Sulfur Batteries[J]. Infomat, 2019,2:379-388.

    18. [18]

      WANG X, LIU Y J, JIA Y F, JI L, HU Q L, DUAN L M, LIU J H. Preparative Chemistry of N-Containing Porous Carbon Nanofibers for Capacity Improvement in Lithium-Sulfur Battery[J]. Chem. J. Chinese Universities, 2020,41(4):829-837.  

    19. [19]

      Chen Y Y, Xu P, Liu Q B, Yuan D, Long X, Zhu S K. Cobalt Embedded in Porous Carbon Fiber Membranes for High-Performance Lithium-Sulfur Batteries[J]. Carbon, 2022,187:187-195. doi: 10.1016/j.carbon.2021.11.015

    20. [20]

      Li N, Cao W Y, Liu Y W, Ye H Q, Han K. Impeding Polysulfide Shuttling with a Three-Dimensional Conductive Carbon Nanotubes/Mxene Framework Modified Separator for Highly Efficient Lithium-Sulfur Batteries[J]. Colloids Surf. A, 2019,573:128-136. doi: 10.1016/j.colsurfa.2019.04.054

    21. [21]

      Yang X X, Xia G, Ye J J, Du W Z, Zheng Z Q, Zhang A Z, Li X T, Chen C Z, Hu C. High-Content Co-Nx Sites on Carbon Nanotubes for Effective Sulfur Catalysis in Lithium-Sulfur Batteries[J]. Appl. Surf. Sci., 2021,541148632. doi: 10.1016/j.apsusc.2020.148632

    22. [22]

      Lu Q Q, Wang X Y, Cao J, Chen C, Chen K N, Zhao Z F, Niu Z Q, Chen J. Freestanding Carbon Fiber Cloth/Sulfur Composites for Flexible Room-Temperature Sodium-Sulfur Batteries[J]. Energy Storage Mater., 2017,8:77-84. doi: 10.1016/j.ensm.2017.05.001

    23. [23]

      Li Z Y, Zou Y L, Duan J L, Long B, Du Y Y. Long-Cycle Stability for Li-S Batteries by Carbon Nanofibers/Reduced Graphene Oxide as Host Cathode Material[J]. Ionics, 2019,25:1659-1668. doi: 10.1007/s11581-019-02897-7

    24. [24]

      An Y L, Wei P, Fan M Q, Chen D, Chen H C, Ju Q J, Tian G L, Shu K Y. Dual-Shell Hollow Polyaniline/Sulfur-Core/Polyaniline Composites Improving the Capacity and Cycle Performance of Lithium-Sulfur Batteries[J]. Appl. Surf. Sci., 2016,375:215-222. doi: 10.1016/j.apsusc.2016.03.070

    25. [25]

      Arie A A, Kristianto H, Cengiz E C, Demir-Cakan R. Waste Tea-Based Porous Carbon-Sulfur Composite Cathodes for Lithium-Sulfur Battery[J]. Ionics, 2019,26:201-212.

    26. [26]

      Arie A A, Kristianto H, Cengiz E C, Demir-Cakan R. Activated Porous Carbons Originated from the Indonesian Snake Skin Fruit Peel as Cathode Components for Lithium Sulfur Battery[J]. Ionics, 2018,25:2121-2129.

    27. [27]

      Liu J, Liu B, Wang C W, Huang Z X, Hu L C, Ke X, Liu L Y, Shi Z C, Guo Z P. Walnut Shell-Derived Activated Carbon: Synthesis and Its Application in the Sulfur Cathode for Lithium-Sulfur Batteries[J]. J. Alloys Compd., 2017,718:373-378. doi: 10.1016/j.jallcom.2017.05.206

    28. [28]

      Chen X J, Du G H, Zhang M, Kalam A, Su Q M, Ding S K. Nitrogen-Doped Hierarchical Porous Carbon Derived from Low-Cost Biomass Pomegranate Residues for High Performance Lithium-Sulfur Batteries[J]. J. Electroanal. Chem., 2019,848113316. doi: 10.1016/j.jelechem.2019.113316

    29. [29]

      Zhang Y G, Zhao Y, Konarov A, Li Z, Chen P. Effect of Mesoporous Carbon Microtube Prepared by Carbonizing the Poplar Catkin on Sulfur Cathode Performance in Li/S Batteries[J]. J. Alloys Compd., 2015,619:298-302. doi: 10.1016/j.jallcom.2014.09.055

    30. [30]

      Li M, Hu P, Wang X, Niu Z H, Zhou Q H, Wang Q Y, Zhu M M, Guo C, Zhang L, Lu J Y, Li J F. Hierarchical Porous Carbon Derived from Peanut Hull for Polysulfide Confinement in Lithium-Sulfur Batteries[J]. Energy Technol., 2019,7(3)1800898. doi: 10.1002/ente.201800898

    31. [31]

      Wu J, Hu J, Song K X, Xu J M, Gao H F. Spirulina-Derived Nitrogen-Doped Porous Carbon as Carbon/S Composite Cathodes for High Cyclability Lithium-Sulphur Batteries[J]. J. Alloys Compd., 2017,704:1-6. doi: 10.1016/j.jallcom.2017.02.052

    32. [32]

      Yang K P, Yan J J, He R Y, Li D, Li Y, Li T, Ren B Z. Nitrogen-Doped Porous Carbon was Prepared from Peony Shell for the Cathode Material of Lithium-Sulfur Battery[J]. J. Electroanal. Chem., 2020,861113922. doi: 10.1016/j.jelechem.2020.113922

    33. [33]

      Song Y, Wang H, Ma Q L, Li D, Yu W S, Liu G X, Wang T T, Yang Y, Dong X Y, Wang J X. Dandelion Derived Nitrogen-Doped Hollow Carbon Host for Encapsulating Sulfur in Lithium Sulfur Battery[J]. ACS Sustainable Chem. Eng., 2018,7:3042-3051.

    34. [34]

      Arie A A, Kristianto H, Susanti R F, Lee J K. Rambutan Peel Derived Porous Carbons for Lithium Sulfur Battery[J]. SN Appl. Sci., 2021,3(5)541. doi: 10.1007/s42452-021-04540-5

    35. [35]

      Deng J, Xiong T Y, Xu F, Li M M, Han C L, Gong Y T, Wang H Y, Wang Y. Inspired by Bread Leavening: One-Pot Synthesis of Hierarchically Porous Carbon for Supercapacitors[J]. Green Chem., 2015,17:4053-4060. doi: 10.1039/C5GC00523J

    36. [36]

      Xiang M W, Yang L, Zheng Y F, Huang J, Jing P, Wu H, Zhang Y, Liu H. Freestanding and Flexible Nitrogen-Doped Carbon Foam/Sulfur Cathode Composited with Reduced Graphene Oxide for High Sulfur Loading Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2017,5:18020-18028. doi: 10.1039/C7TA04962E

    37. [37]

      Peng Y M, Sheng M J, Quan S H, Ji W A, Yang T F, Shu W Y, Hong Q, Ming W R. Atomic Layer Deposited TiO2 on a Nitrogen-Doped Graphene/Sulfur Electrode for High Performance Lithium-Sulfur Batteries[J]. Energy Environ. Sci., 2016,9:1495-1503. doi: 10.1039/C5EE03902A

    38. [38]

      Xie J, Yang J, Zhou X Y, Zou Y L, Tang J J, Wang S C, Chen F. Preparation of Three-Dimensional Hybrid Nanostructure-Encapsulated Sulfur Cathode for High-Rate Lithium Sulfur Batteries[J]. J. Power Sources, 2014,253:55-63. doi: 10.1016/j.jpowsour.2013.12.074

    39. [39]

      Qian X Y, Li F, Yang X F, Jin L A, Yao S S, Shen X Q, Li T B, Qin S B. Decoration Of Indium Tin Oxide Nanoparticles with Different Crystal Structures and Morphologies on Polypropylene Separator for Li-S Battery[J]. Int. J. Energy Res., 2021,45:8992-9005. doi: 10.1002/er.6432

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(10)
  • Abstract views(634)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return