Citation: Pei CHEN, Wen-Hao LIANG, Ya-Kun TANG, Yang GAO, Rui SHENG, Lang LIU. Preparation and Electrochemical Properties of S/Porous Carbon Nanotube Composites[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 805-811. doi: 10.11862/CJIC.2022.088 shu

Preparation and Electrochemical Properties of S/Porous Carbon Nanotube Composites

  • Corresponding author: Lang LIU, liulang@xju.edu.cn
  • Received Date: 2 October 2021
    Revised Date: 4 March 2022

Figures(5)

  • In order to solve the problems such as poor electrical conductivity of sulfur, the large volume expansion and the shuttle effect of intermediate polysulfides during the cycling process, the S/PCNT composites were prepared by introducing sulfur into porous carbon nanotubes (PCNTs), the electrochemical performance of S/PCNT was investigat-ed. Compared with S/CNT, the electrochemical performance of S/PCNT has been significantly improved. This can be attributed to the embedded structure of S/PCNT, which has provided buffer space for the volume expansion during the charge and discharge process, avoided the direct contact between sulfur and electrolytes, restricted the dissolution of polysulfides, and alleviated the shuttle effect of polysulfides. Therefore, S/PCNT has better cycling stability.
  • 加载中
    1. [1]

      Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable Lithium Batteries[J]. Angew. Chem. Int. Ed., 2008,47(16):2930-2946. doi: 10.1002/anie.200702505

    2. [2]

      Manthiram A, Chung S H, Zu C X.. Lithium-Sulfur Batteries: Progress and Prospects[J]. Adv. Mater., 2015,27(12):1980-2006. doi: 10.1002/adma.201405115

    3. [3]

      Wang Z Y, Zhang N, Yu M L, Liu J S, Wang S, Qiu J S.. Boosting Redox Activity on MXene-Induced Multifunctional Collaborative Interface in High Li2S Loading Cathode for High-Energy Li-S and Metallic Li -Free Rechargeable Batteries[J]. J. Energy Chem., 2019,37:183-191. doi: 10.1016/j.jechem.2019.03.012

    4. [4]

      Ji X L, Lee K T, Nazar L F.. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium -Sulphur Batteries[J]. Nat. Mater., 2009,8(6):500-506. doi: 10.1038/nmat2460

    5. [5]

      Zhang C F, Wu H B, Yuan C Z, Guo Z P, Lou X W. Confining Sulfur in Double-Shelled Hollow Carbon Spheres for Lithium-Sulfur Batteries[J]. Angew. Chem. Int. Ed., 2012,51(38):9592-9595. doi: 10.1002/anie.201205292

    6. [6]

      Zheng M B, Chi Y, Hu Q, Tang H, Jiang X L, Zhang L, Zhang S T, Pang H, Xu Q. Carbon Nanotube-Based Materials for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2019,7:17204-17241. doi: 10.1039/C9TA05347F

    7. [7]

      Zeng S Z, Yao Y C, Zeng X R, He Q J, Zheng X F, Chen S S, Tu W X, Zou J Z. A Composite of Hollow Carbon Nanospheres and Sulfur-Rich Polymers for Lithium-Sulfur Batteries[J]. J. Power Sources, 2017,357:11-18. doi: 10.1016/j.jpowsour.2017.04.092

    8. [8]

      Xie Y P, Fang L, Cheng H W, Hu C J, Zhao H B, Xu J Q, Fang J H, Lu X G, Zhang J J. Biological Cell Derived N -Doped Hollow Porous Carbon Microspheres for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2016,4:15612-15620. doi: 10.1039/C6TA06164H

    9. [9]

      Liang W H, Tang Y K, Liu L, Zhu C X, Sheng R. Effective Trapping of Polysulfides Using Functionalized Thin-Walled Porous Carbon Nanotubes as Sulfur Hosts for Lithium-Sulfur Batteries[J]. Inorg. Chem., 2020,59(12):8481-8486. doi: 10.1021/acs.inorgchem.0c00895

    10. [10]

      Mi K, Jiang Y, Feng J K, Qian Y T, Xiong S L. Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Efficient Scaffolds for Lithium-Sulfur Batteries[J]. Adv. Funct. Mater., 2016,26(10):1571-1579. doi: 10.1002/adfm.201504835

    11. [11]

      Wang D T, Wang K, Wu H C, Luo Y F, Sun L, Zhao Y X, Wang J, Jia L J, Jiang K L, Li Q Q, Fan S S, Wang J P. CO2 Oxidation of Car-bon Nanotubes for Lithium-Sulfur Batteries with Improved Electro-chemical Performance[J]. Carbon, 2018,132:370-379. doi: 10.1016/j.carbon.2018.02.048

    12. [12]

      Yun J H, Kim J H, Kim D K, Lee H W. Suppressing Polysulfide Dis-solution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium-Sulfur Batteries[J]. Nano Lett., 2018,18(1):475-481. doi: 10.1021/acs.nanolett.7b04425

    13. [13]

      Zheng G Y, Yang Y, Cha J J, Hong S S, Cui Y. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries[J]. Nano Lett., 2011,11(10):4462-4467. doi: 10.1021/nl2027684

    14. [14]

      Wu F, Shi L L, Mu D B, Xu H L, Wu B R. A Hierarchical Carbon Fiber/Sulfur Composite as Cathode Material for Li-S Batteries[J]. Carbon, 2015,86:146-155. doi: 10.1016/j.carbon.2015.01.026

    15. [15]

      Song J X, Yu Z X, Gordin M L, Wang D H. Advanced Sulfur Cath-ode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries[J]. Nano Lett., 2016,16(2):864-870. doi: 10.1021/acs.nanolett.5b03217

    16. [16]

      Vélez P, Para M L, Luque G L, Barraco D, Leiva E P M. Modeling of Substitutionally Modified Graphene Structures to Prevent the Shuttle Mechanism in Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2019,309:402-414. doi: 10.1016/j.electacta.2019.04.062

    17. [17]

      Ma L B, Chen R P, Zhu G Y, Hu Y, Wang Y R, Chen T, Liu J, Jin Z. Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(7):7274-7283. doi: 10.1021/acsnano.7b03227

    18. [18]

      Gueon D, Hwang J T, Yang S B, Cho E, Sohn K, Yang D K, Moon J H. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes[J]. ACS Nano, 2018,12(1):226-233. doi: 10.1021/acsnano.7b05869

    19. [19]

      Fang R P, Li G X, Zhao S Y, Yin L C, Du K, Hou P X, Wang S G, Cheng H M, Liu C, Li F. Single-Wall Carbon Nanotube Network Enabled Ultrahigh Sulfur-Content Electrodes for High-Performance Lithium-Sulfur Batteries[J]. Nano Energy, 2017,42:205-214. doi: 10.1016/j.nanoen.2017.10.053

    20. [20]

      Sun L, Wang D T, Luo Y F, Wang K, Kong W B, Wu Y, Zhang L N, Jiang K L, Li Q Q, Zhang Y H, Wang J P, Fan S S.. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Elec-trode for High -Performance Lithium-Sulfur Batteries.[J]. ACS Nano, 2016,10(1):1300-1308. doi: 10.1021/acsnano.5b06675

    21. [21]

      Ni W, Liang F X, Liu J G, Qu X Z, Zhang C L, Li J L, Wang Q, Yang Z Z. Polymer Nanotubes toward Gelating Organic Chemicals[J]. Chem. Commun., 2011,47:4727-4729. doi: 10.1039/c1cc10900f

    22. [22]

      Zhou H J, Liu L, Wang X C, Liang F X, Bao S J, Lv D M, Tang Y K, Jia D Z. Multimodal Porous CNT@TiO2 Nanocables with Superior Performance in Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2013,1:8525-8528. doi: 10.1039/c3ta11540b

    23. [23]

      Tang Y K, Liu L, Wang X C, Zhou H J, Jia D Z. High-Yield Bamboo-like Porous Carbon Nanotubes with High-Rate Capability as Anodes for Lithium-Ion Batteries[J]. RSC Adv., 2014,4:44852-44857. doi: 10.1039/C4RA05978F

    24. [24]

      Liu W, Tang Y K, Sun Z P, Gao S S, Ma J H, Liu L.. A Simple Approach of Constructing Sulfur-Containing Porous Carbon Nano-tubes for High-Performance Supercapacitors.[J]. Carbon, 2017,115:754-762. doi: 10.1016/j.carbon.2017.01.070

    25. [25]

      Lee S Y, Choi Y, Kim J K, Lee S J, Bae J S, Jeong E D. Biomass-Garlic-Peel-Derived Porous Carbon Framework as a Sulfur Host for Lithium-Sulfur Batteries[J]. J. Ind. Eng. Chem., 2021,94:272-281. doi: 10.1016/j.jiec.2020.10.046

    26. [26]

      Zhang B, Qin X, Li G R, Gao X P. Enhancement of Long Stability of Sulfur Cathode by Encapsulating Sulfur into Micropores of Carbon Spheres[J]. Energy Environ. Sci., 2010,3:1531-1537. doi: 10.1039/c002639e

    27. [27]

      Fu Y Z, Su Y S, Manthiram A. Sulfur-Carbon Nanocomposite Cath-odes Improved by an Amphiphilic Block Copolymer for High-Rate Lithium -Sulfur Batteries[J]. ACS Appl. Mater. Interfaces, 2012,4(11):6046-6052. doi: 10.1021/am301688h

    28. [28]

      Su Y S, Fu Y Z, Manthiram A. Self-Weaving Sulfur-Carbon Composite Cathodes for High Rate Lithium-Sulfur Batteries[J]. Phys. Chem. Chem. Phys., 2012,14:14495-14499. doi: 10.1039/c2cp42796f

    29. [29]

      Zhang X Q, Yuan W, Yang Y, Chen Y, Tang Z H, Wang C, Yuan Y H, Ye Y T, Wu Y P, Tang Y.. Immobilizing Polysulfide by In Situ Topochemical Oxidation Derivative TiC@Carbon -Included TiO2 Core-Shell Sulfur Hosts for Advanced Lithium-Sulfur Batteries.[J]. Small, 2020,16(52)e2005998. doi: 10.1002/smll.202005998

    30. [30]

      Faheem M, Li W L, Ahmad N, Yang L, Tufail M K, Zhou Y D, Zhou L, Chen R J, Yang W. Chickpea Derived Co Nanocrystal Encapsulat-ed in 3D Nitrogen-Doped Mesoporous Carbon: Pressure Cooking Synthetic Strategy and Its Application in Lithium-Sulfur Batteries[J]. J. Colloid Interface Sci., 2021,585:328-336.

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(9)
  • Abstract views(854)
  • HTML views(240)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return