Citation: Yang YANG, Yue WANG, Yan CONG, Yong-Qi CHEN, Yun-Chong HUANG. Surface Plasmon-Enhanced Upconversion Luminescence Properties of Silver Nano-rices[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 829-835. doi: 10.11862/CJIC.2022.084 shu

Surface Plasmon-Enhanced Upconversion Luminescence Properties of Silver Nano-rices

  • Corresponding author: Yan CONG, congyan@dlnu.edu.cn
  • Received Date: 5 November 2021
    Revised Date: 9 February 2022

Figures(5)

  • Upconversion nanoparticles have been limited to further development in the field of application due to their low luminescence efficiency. Surface plasmon modulation using noble metal has been developed as an effective way to enhance upconversion luminescence. In this work, the noble metal ricelike structure with a simple synthetic procedure was obtained through regulating the localized electric field around upconversion nanoparticles for improving upconversion luminescence intensity. The 3D finite element method was employed to investigate the effect of the different contact modes between Ag rices in the actual films on induced localized electric field enhancement. Further, this enhancement effect caused by plasmon-coupling is a crucial contribution in this upconversionmodulated system. And the upconversion intensity improvement of nearly 100 times was acquired. Finally, the upconversion luminescence performance can be further optimized by adjusting the thickness of the plasmonic layer and luminescence layer.
  • 加载中
    1. [1]

      Liu Q, Feng W, Yang T S, Yi T, Li F Y. Upconversion Luminescence Imaging of Cells and Small Animals[J]. Nat. Protoc., 2013,8(10):2033-2044. doi: 10.1038/nprot.2013.114

    2. [2]

      Han S K, Gu C, Zhao S T, Xu S, Gong M, Li Z Y, Yu S H. Precursor Triggering Synthesis of Self-Coupled Sulfide Polymorphs with Enhanced Photoelectrochemical Properties[J]. J. Am. Chem. Soc., 2016,138(39):12913-12919. doi: 10.1021/jacs.6b06609

    3. [3]

      He M, Pang X C, Liu X Q, Jiang B B, He Y J, Snaith H, Lin Z Q. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells[J]. Angew. Chem. Int. Ed., 2016,55(13):4280-4284. doi: 10.1002/anie.201600702

    4. [4]

      Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G. Temporal Full-Colour Tuning through Non-Steady-State Upconversion[J]. Nat. Nanotechnol., 2015,10(3):237-242. doi: 10.1038/nnano.2014.317

    5. [5]

      Zhang J H, Hao Z D, Li J, Zhang X, Luo Y S, Pan G H. Observation of Efficient Population of the Red-Emitting State from the Green State by Non-multiphonon Relaxation in the Er3+-Yb3+ System[J]. Light Sci. Appl., 2015,4e239. doi: 10.1038/lsa.2015.12

    6. [6]

      Liu K C, Zhang Z Y, Shan C X, Feng Z Q, Li J S, Song C L, Bao Y N, Qi X H, Dong B. A Flexible and Superhydrophobic Upconversion-Luminescence Membrane as an Ultrasensitive Fluorescence Sensor for Single Droplet Detection[J]. Light Sci. Appl., 2016,5(8)e16136. doi: 10.1038/lsa.2016.136

    7. [7]

      Saboktakin M, Ye X C, Oh S J, Hong S H, Fafarman A T, Chettiar U K, Engheta N, Murray C B, Kagan C R. Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation[J]. ACS Nano, 2012,6(10):8758-8766. doi: 10.1021/nn302466r

    8. [8]

      Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Simultaneous Phase and Size Control of Upconversion Nanocrystals through Lanthanide Doping[J]. Nature, 2010,463(7284):1061-1065. doi: 10.1038/nature08777

    9. [9]

      Govorov A O, Richardson H H. Generating Heat with Metal Nanoparticles[J]. Nano Today, 2007,2(1):30-38. doi: 10.1016/S1748-0132(07)70017-8

    10. [10]

      Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A. The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles[J]. Adv. Funct. Mater., 2009,19(18):2924-2929. doi: 10.1002/adfm.200900234

    11. [11]

      Pelton M. Modified Spontaneous Emission in Nanophotonic Structures[J]. Nat. Photonics, 2015,9(7):427-435. doi: 10.1038/nphoton.2015.103

    12. [12]

      Yin Z, Li H, Xu W, Cui S B, Zhou D L, Chen X, Zhu Y S, Qin G S, Song H W. Local Field Modulation Induced Three-Order Upconversion Enhancement: Combining Surface Plasmon Effect and Photonic Crystal Effect[J]. Adv. Mater., 2016,28(13):2518-2525. doi: 10.1002/adma.201502943

    13. [13]

      Zilio P, Dipalo M, Tantussi F, Messina G C, Angelis F D. Hot Electrons in Water Injection and Ponderomotive Acceleration by Means of Plasmonic Nanoelectrodes[J]. Light Sci. Appl., 2017,6(6)e17002. doi: 10.1038/lsa.2017.2

    14. [14]

      Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H. The Synthesis of Size- and Color-Controlled Silver Nanoparticles by Using Microwave Heating and Their Enhanced Catalytic Activity by Localized Surface Plasmon Resonance[J]. Angew. Chem. Int. Ed., 2013,52(29):7446-7450. doi: 10.1002/anie.201301652

    15. [15]

      He J J, Zheng W, Ligmajer F, Chan C F, Bao Z Y, Wong K L, Chen X Y, Hao J H, Dai J Y, Yu S F, Lei D Y. Plasmonic Enhancement and Polarization Dependence of Nonlinear Upconversion Emissions from Single Gold Nanorod@SiO2@CaF2∶Yb3+, Er3+ Hybrid Core-Shell-Satellite Nanostructures[J]. Light Sci. Appl., 2017,6(5)e16217. doi: 10.1038/lsa.2016.217

    16. [16]

      Rycenga M, Cobley C M, Zeng J, Li W Y, Moran C H, Zhang Q, Qin D, Xia Y N. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications[J]. Chem. Rev., 2011,111(6):3669-3712. doi: 10.1021/cr100275d

    17. [17]

      Cobley C M, Rycenga M, Zhou F, Li Z Y, Xia Y N. Controlled Etching as a Route to High Quality Silver Nanospheres for Optical Studies[J]. J. Phys. Chem. C, 2009,113(39):16975-16982. doi: 10.1021/jp906457f

    18. [18]

      Eustis S, El-Sayed M A. Why Gold Nanoparticles are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes[J]. Chem. Soc. Rev., 2006,35(3):209-217. doi: 10.1039/B514191E

    19. [19]

      Mock J J, Barbic M, Smith D R, Schultz D A, Schultz S. Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles[J]. J. Chem. Phys., 2002,116(15):6755-6759. doi: 10.1063/1.1462610

    20. [20]

      Kelly K L, Coronado E, Zhao L L, Schatz G C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment[J]. J. Phys. Chem. B, 2003,107(3):668-677. doi: 10.1021/jp026731y

    21. [21]

      Zhang W N, Li J, Lei H X, Li B J. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles[J]. ACS Appl. Mater. Interfaces, 2017,9(49):42935-42942. doi: 10.1021/acsami.7b16586

    22. [22]

      Bujak Ł, Narushima K, Sharma D K, Hirata S, Vacha M. Plasmon Enhancement of Triplet Exciton Diffusion Revealed by Nanoscale Imaging of Photochemical Fluorescence Upconversion[J]. J. Phys. Chem. C, 2017,121(45):25479-25486. doi: 10.1021/acs.jpcc.7b08495

    23. [23]

      Zhang S P, Chen L, Huang Y Z, Xu H X. Reduced Linewidth Multipolar Plasmon Resonances in Metal Nanorods and Related Applications[J]. Nanoscale, 2013,5(15):6985-6991. doi: 10.1039/c3nr01219k

    24. [24]

      Zhang Z, Lin M S. High-Yield Preparation of Vertically Aligned Gold Nanorod Arrays via a Controlled Evaporation-Induced Self-Assembly Method[J]. J. Mater. Chem. C, 2014,2(23):4545-4551. doi: 10.1039/c4tc00325j

    25. [25]

      Liang H Y, Yang H X, Wang W Z, Li J Q, Xu H X. High-Yield Uniform Synthesis and Microstructure-Determination of Rice-Shaped Silver Nanocrystals[J]. J. Am. Chem. Soc., 2009,131(17):6068-6069. doi: 10.1021/ja9010207

    26. [26]

      Fang X N, Song H W, Xie L P, Liu Q, Zhang H, Bai X, Dong B, Wang Y, Han W. Origin of Luminescence Enhancement and Quenching of Europium Complex in Solution Phase Containing Ag Nanoparticles[J]. J. Chem. Phys., 2009,131(5)054506. doi: 10.1063/1.3193721

    27. [27]

      Kang F W, He J J, Sun T Y, Bao Z Y, Wang F, Lei D Y. Plasmonic Dual-Enhancement and Precise Color Tuning of Gold Nanorod@SiO2 Coupled Core-Shell-Shell Upconversion Nanocrystals[J]. Adv. Funct. Mater., 2017,27(36)1701842. doi: 10.1002/adfm.201701842

    28. [28]

      Huang L H, Liu X R, Xu W, Chen B J, Lin J L. Infrared and Visible Luminescence Properties of Er3+ and Yb3+ Ions Codoped Ca3Al2Ge3O12 Glass under 978 nm Diode Laser Excitation[J]. J. Appl. Phys., 2001,90(11):5550-5553. doi: 10.1063/1.1413494

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    17. [17]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    20. [20]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

Metrics
  • PDF Downloads(41)
  • Abstract views(1480)
  • HTML views(474)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return