Citation: Xiu-Juan JIANG, Zhi-Yin XIAO, Li LONG, Li-Mei CHEN, Li-Qiu ZHANG, Xiao-Ming LIU. Interactions of a Water-Soluble Diiron Hexacarbonyl Complex with Biologically Relevant Molecules and Their Promotion in CO-Release[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 913-920. doi: 10.11862/CJIC.2022.083 shu

Interactions of a Water-Soluble Diiron Hexacarbonyl Complex with Biologically Relevant Molecules and Their Promotion in CO-Release

Figures(9)

  • In this study, a water-soluble diiron carbonyl complex, [Fe2(μ-SCH2R)2(CO)6] (R=CH(OH)CH2(OH), 1), which has the potential as a CO-releasing molecule (CORM), was used to spectroscopically investigate its interaction with some biological molecules, such as hemoglobin (Hb), myoglobin (Mb), bovine serum albumin (BSA), glutathione (GSH), and DNA. The IR spectroscopic results showed that the proteins and GSH could promote the decomposition of complex 1 to release CO. All the CO-release progress followed the first-order kinetic model and GSH possessed the highest efficiency in promoting CO-release. UV absorption spectral variations and fluorescent quench effect also indicated the interactions between these biologically relevant molecules and the diiron carbonyl complex. CD spectra of the mixture of the proteins and complex 1 indicated that no conformational changes in the proteins are induced. The interactions between pUC19 plasmid DNA and complex 1 suggested that the complex could not cause DNA damage.
  • 加载中
    1. [1]

      Babu D, Motterlini R, Lefebvre R A. CO and CO-Releasing Molecules (CO-RMs) in Acute Gastrointestinal Inflammation[J]. Brit. J. Pharmacol, 2015,172(6):1557-1573. doi: 10.1111/bph.12632

    2. [2]

      Adach W, Błaszczyk M, Olas B. Carbon Monoxide and Its Donors-Chemical and Biological Properties[J]. Chem. Biol. Interact., 2020,318108973. doi: 10.1016/j.cbi.2020.108973

    3. [3]

      Mann B E. Signaling Molecule Delivery (CO)//Reedijk J, Poeppelmeier K. Comprehensive Inorganic Chemistry Ⅱ. 2nd ed. Amsterdam: Elsevier, 2013: 857-876

    4. [4]

      Kourti M, Jiang W G, Cai J. Aspects of Carbon Monoxide in Form of CO-Releasing Molecules Used in Cancer Treatment: More Light on the Way[J]. Oxid. Med. Cell. Longev., 2017,20179326454.

    5. [5]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon Monoxide-Releasing Molecules-Characterization of Biochemical and Vascular Activities[J]. Circ. Res., 2002,90(2):E17-E24.

    6. [6]

      Mann B E, Motterlini R. CO and NO in Medicine[J]. Chem. Commun., 2007(41):4197-4208. doi: 10.1039/b704873d

    7. [7]

      Mann B E. Carbon Monoxide: An Essential Signaling Molecule[J]. Top. Organomet. Chem., 2010,32:247-285.

    8. [8]

      Ford P C. Metal Complex Strategies for Photo-Uncaging the Small Molecule Bioregulators Nitric Oxide and Carbon Monoxide[J]. Coord. Chem. Rev., 2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018

    9. [9]

      Ismailova A, Kuter D, Bohle D S, Butler I S. An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules[J]. Bioinorg. Chem. Appl., 20188547364.

    10. [10]

      Lazarus L S, Benninghoff A D, Berreau L M. Development of Triggerable, Trackable, and Targetable Carbon Monoxide Releasing Molecules[J]. Acc. Chem. Res., 2020,53(10):2273-2285. doi: 10.1021/acs.accounts.0c00402

    11. [11]

      Alberto R, Motterlini R. Chemistry and Biological Activities of CO-Releasing Molecules (CORMs) and Transition Metal Complexes[J]. Dalton Trans., 2007(17):1651-1660. doi: 10.1039/b701992k

    12. [12]

      Fairlamb I J S, Duhme-Klair A K, Lynam J M, Moulton B E, O'Brien C T, Sawle P, Hammad J, Motterlini R. η4-Pyrone Iron(0)carbonyl Complexes as Effective CO-Releasing Molecules (CO-RMs)[J]. Biorg. Med. Chem. Lett., 2006,16(4):995-998. doi: 10.1016/j.bmcl.2005.10.085

    13. [13]

      Scapens D, Adams H, Johnson T R, Mann B E, Sawle P, Aqil R, Perrior T, Motterlini R. [(η-C5H4R)Fe(CO)2X], X=Cl, Br, I, NO3, CO2Me and[(η-C5H4R)Fe(CO)3]+, R= (CH2)nCO2Me (n=0-2), and CO2CH2CH2OH: A New Group of CO-Releasing Molecules[J]. Dalton Trans., 2007(43):4962-4973. doi: 10.1039/b704832g

    14. [14]

      Kretschmer R, Gessner G, Görls H, Heinemann S H, Westerhausen M. Dicarbonyl-Bis(cysteamine)iron(Ⅱ) : A Light Induced Carbon Monoxide Releasing Molecule Based on Iron (CORM-S1)[J]. J. Inorg. Biochem., 2011,105(1):6-9. doi: 10.1016/j.jinorgbio.2010.10.006

    15. [15]

      Romanski S, Kraus B, Guttentag M, Schlundt W, Rucker H, Adler A, Neudorfl J M, Alberto R, Amslinger S, Schmalz H G. Acyloxybutadiene Tricarbonyl Iron Complexes as Enzyme-Triggered CO-Releasing Molecules (ET-CORMs): A Structure-Activity Relationship Study[J]. Dalton Trans., 2012,41(45):13862-13875. doi: 10.1039/c2dt30662j

    16. [16]

      Romanski S, Rücker H, Stamellou E, Guttentag M, Neudörfl J M, Alberto R, Amslinger S, Yard B, Schmalz H G. Iron Dienylphosphate Tricarbonyl Complexes as Water-Soluble Enzyme-Triggered CO-Releasing Molecules (ET-CORMs)[J]. Organometallics, 2012,31(16):5800-5809. doi: 10.1021/om300359a

    17. [17]

      Botov S, Stamellou E, Romanski S, Guttentag M, Alberto R, Neudoerfl J M, Yard B, Schmalz H G. Synthesis and Performance of Acyloxy-diene-Fe(CO)3 Complexes with Variable Chain Lengths as Enzyme-Triggered Carbon Monoxide-Releasing Molecules[J]. Organometallics, 2013,32(13):3587-3594. doi: 10.1021/om301233h

    18. [18]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief Survey of Diiron and Monoiron Carbonyl Complexes and Their Potentials as CO-Releasing Molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634. doi: 10.1016/j.ccr.2020.213634

    19. [19]

      Liu X M, Ibrahim S K, Tard C, Pickett C J. Iron-Only Hydrogenase: Synthetic, Structural and Reactivity Studies of Model Compounds[J]. Coord. Chem. Rev., 2005,249(15/16):1641-1652.

    20. [20]

      Tard C, Liu X M, Ibrahim S K, Bruschi M, De Gioia L, Davies S C, Yang X, Wang L S, Sawers G, Pickett C J. Synthesis of the H-Cluster Framework of Iron-Only Hydrogenase[J]. Nature, 2005,433(7026):610-613. doi: 10.1038/nature03298

    21. [21]

      Tard C, Pickett C J. Structural and Functional Analogues of the Active Sites of the[Fe]-, [NiFe]-, and[FeFe]-Hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q

    22. [22]

      Li Y L, Rauchfuss T B. Synthesis of Diiron(Ⅰ) Dithiolato Carbonyl Complexes[J]. Chem. Rev., 2016,116(12):7043-7077. doi: 10.1021/acs.chemrev.5b00669

    23. [23]

      Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water-Soluble Diiron Hexacarbonyl Complex as a CO-RM: Controllable CO-Releasing, Releasing Mechanism and Biocompatibility[J]. Dalton Trans., 2013,42:15663-15669. doi: 10.1039/c3dt51281a

    24. [24]

      Jiang X J, Long L, Wang H L, Chen L M, Liu X M. Diiron Hexacarbonyl Complexes as Potential CO-RMs: CO-Releasing Initiated by a Substitution Reaction with Cysteamine and Structural Correlation to the Bridging Linkage[J]. Dalton Trans., 2014,43(26):9968-9975. doi: 10.1039/C3DT53620C

    25. [25]

      Chen L M, Jiang X J, Wang X, Long L, Zhang J Y, Liu X M. A Kinetic Analysis of CO Release from a Diiron Hexacarbonyl Complex Promoted by Amino Acids[J]. New J. Chem., 2014,38(12):5957-5963. doi: 10.1039/C4NJ00661E

    26. [26]

      Gao C J, Liang X H, Guo Z X, Jiang B P, Liu X M, Shen X C. Diiron Hexacarbonyl Complex Induces Site-Specific Release of Carbon Monoxide in Cancer Cells Triggered by Endogenous Glutathione[J]. ACS Omega, 2018,3(3):2683-2689. doi: 10.1021/acsomega.8b00052

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(11)
  • Abstract views(513)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return