Citation: Li-Xia FENG, Qiao-Ling LIU, Si-Si FENG, Yu-Cui HOU, Yue-Kui WANG. Chiroptical Properties of Mixed-Ligand Ruthenabenzene Complex[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 665-674. doi: 10.11862/CJIC.2022.079 shu

Chiroptical Properties of Mixed-Ligand Ruthenabenzene Complex

Figures(6)

  • The theoretical study of reaction mechanism and relationship between chiral configuration and property of chiral ruthenium complexes is an important topic. In this work, the chiroptical properties of the mixed-ligand ruthenabenzene complex [RuBen(PPh3)2(Phen) (L-Cys)]2+ (Phen=phenanthroline, L-Cys=L-cysteine) have been explored using the hybrid density functional theory (DFT). The geometrical and electronic structures and subsequent frequency verifications were calculated using the B3LYP method with the mixed basis set: the ECP28MWB pseudopotential with its (8s 7p6d2f)/[6s5p3d2f] valence basis set for ruthenium, and 6-311G(d) for other atoms. Based on these, the excited energies, rotational and oscillator strengths, as well as the electronic circular dichroism (ECD) spectra, were then calculated employing the time-dependent DFT method with the same functional and basis set. In all cases, solvent (water) effects were included using the polarized continuum model (PCM). Additionally, the intricate exciton-splitting pattern in the short wavelength region was analyzed using the exciton chirality method (ECM). The calculated ECD spectra were in good agreement with the observed ones as far as their band shape, signs, and relative intensities were concerned. The Λ/Δ configurations at the octahedral core dominate the distribution of the ECD curves, and the λ/δ twists of the L-Cys rings only affect the relative intensities of the absorption bands, while the contributions of the R/S chiral carbon atoms are negligible. The absorption bands above 340 nm are characterized by the ππ * transitions mixed with some metal-centered dd transitions. The two pairs of ECD bands below 340 nm with clearly different intensities could be assigned to the classical (the strong one) and nonclassical (the weak one) exciton coupling, respectively. Both show a positive exciton-splitting pattern for the Λ-configuration, which could be used as a criterion to determine the absolute configurations of similar complexes. Additionally, comparing with mixed-ligand inorganic ruthenium complexes reveals the similarities and differences in their chiroptical properties.
  • 加载中
    1. [1]

      XU Z X, LI L F, BAI X L, XU S F. Enantiomeric Helical Frameworks with dia Net Based on Rigid Ligands from Spontaneous Resolution[J]. Chinese J. Inorg. Chem., 2021,37(7):1191-1196.  

    2. [2]

      CHENG L, YANG J H, ZHAI Q C, ZHANG Q S. A Chiral Ag(Ⅰ) Coordination Polymer Based on an α, α-L-Diaryl Prolinol-Pyridine Derivative: Circular Dichroism, SHG Response and Luminescent Property[J]. Chinese J. Inorg. Chem., 2020,36(2):361-367.  

    3. [3]

      Zhao X, Nguyen E T, Hong A N, Feng P Y, Bu X H. Chiral Isocamphoric Acid: Founding a Large Family of Homochiral Porous Materials[J]. Angew. Chem. Int. Ed., 2018,57(24):7101-7105. doi: 10.1002/anie.201802911

    4. [4]

      Santos A R, Escudero D, González L, Orellana G. Unravelling the Quenching Mechanisms of a Luminescent Ru Probe for Cu[J]. Chem. Asian J., 2015,10(3):622-629. doi: 10.1002/asia.201403340

    5. [5]

      Knoll J D, Turro C. Control and Utilization of Ruthenium and Rhodium Metal Complex Excited States for Photoactivated Cancer Therapy[J]. Coord. Chem. Rev., 2015,282-283:110-126. doi: 10.1016/j.ccr.2014.05.018

    6. [6]

      Estalayo-Adrián S, Garnir K, Moucheron C. Perspectives of Ruthenium Polyazaaromatic Photo -oxidizing Complexes Photoreactive towards Tryptophan-Containing Peptides and Derivatives[J]. Chem. Commun., 2018,54:322-337. doi: 10.1039/C7CC06542F

    7. [7]

      Padhi S K, Fukuda R, Ehara M, Tanaka K. Photoisomerization and Proton-Coupled Electron Transfer (PCET) Promoted Water Oxidation by Mononuclear Cyclometalated Ruthenium Catalysts[J]. Inorg. Chem., 2012,51(9):5386-5392. doi: 10.1021/ic3003542

    8. [8]

      Feng L X, Wang Y K, Jia J. Triplet Ground-State-Bridged Photochemical Process: Understanding the Photoinduced Chiral Inversion at the Metal Center of[Ru(phen)2(L-Ser)] + and Its Bipy Analogues[J]. Inorg. Chem., 2017,56(23):14467-14476. doi: 10.1021/acs.inorgchem.7b02030

    9. [9]

      Feng L X, Wang Y K. A Key Factor Dominating the Competition between Photolysis and Photoracemization of [Ru(bipy)3]2+ and [Ru(phen)3]2+ Complexes[J]. Inorg. Chem., 2018,57(15):8994-9001. doi: 10.1021/acs.inorgchem.8b00975

    10. [10]

      Salassa L, Borfecchia E, Ruiu T, Garino C, Gianolio D, Gobetto R, Sadler P J, Cammarata M, Wulff M, Lamberti C. Photo-induced Pyridine Substitution in cis-[Ru(bpy)2(py)2]Cl2: A Snapshot by Time-Resolved X-ray Solution Scattering[J]. Inorg. Chem., 2010,49(23):11240-11248. doi: 10.1021/ic102021k

    11. [11]

      Wang Y, Wang Y K, Wang J M, Liu Y, Yang Y T. Theoretical Analysis of the Individual Contributions of Chiral Arrays to the Chiroptical Properties of Tris -diamine Ruthenium Chelates[J]. J. Am. Chem. Soc., 2009,131(25):8839-8847. doi: 10.1021/ja9004738

    12. [12]

      Zhu J, Jia G C, Lin Z Y. Understanding Nonplanarity in Metallabenzene Complexes[J]. Organometallics, 2007,26(8):1986-1995. doi: 10.1021/om0701367

    13. [13]

      Lin R, Zhao J, Chen H Y, Zhang H, Xia H P. Interconversion of Metallabenzenes and Cyclic η2-Allene-Coordinated Complexes[J]. Chem. Asian J., 2012,7(8):1915-1924. doi: 10.1002/asia.201200231

    14. [14]

      Wang T D, Li S H, Zhang H, Lin R, Han F F, Lin Y M, Wen T B, Xia H P. Annulation of Metallabenzenes: From Osmabenzene to Osmabenzothiazole to Osmabenzoxazole[J]. Angew. Chem. Int. Ed., 2009,48(35):6453-6456. doi: 10.1002/anie.200902738

    15. [15]

      Iron M A, Lucassen A C B, Cohen H, van der Boom M E, Martin J M L. A Computational Foray into the Formation and Reactivity of Metallabenzenes[J]. J. Am. Chem. Soc., 2004,126(37):11699-11710. doi: 10.1021/ja047125e

    16. [16]

      Yang J, Jones W M, Dixon J K, Allison N T. Detection of a Ruthena-benzene, Ruthenaphenoxide, and Ruthenaphenanthrene Oxide: The First Metalla Aromatics of a Second-Row Transition Metal[J]. J. Am. Chem. Soc., 1995,117(38):9776-9777. doi: 10.1021/ja00143a029

    17. [17]

      Zhang H, Xia H P, He G M, Wen T B, Gong L, Jia G C. Synthesis and Characterization of Stable Ruthenabenzenes[J]. Angew. Chem. Int. Ed., 2006,45(18):2920-2923. doi: 10.1002/anie.200600055

    18. [18]

      Lin R, Zhang H, Li S H, Wang J N, Xia H P. New Highly Stable Metallabenzenes via Nucleophilic Aromatic Substitution Reaction[J]. Chem. Eur. J., 2011,17(15):4223-4231. doi: 10.1002/chem.201003566

    19. [19]

      Zhang H, Lin R, Li J H, Zhu J, Xia H P. Interconversion between Ruthenacyclohexadiene and Ruthenabenzene: A Combined Experimental and Theoretical Study[J]. Organometallics, 2014,33(19):5606-5609. doi: 10.1021/om500550a

    20. [20]

      Lin R, Zhang H, Li S H, Chen L, Zhang W, Wen T B, Zhang H, Xia H. pH-Switchable Inversion of the Metal-Centered Chirality of Metallabenzenes: Opposite Stereodynamics in Reactions of Ruthena-benzene with L-and D-Cysteine[J]. Chem. Eur. J., 2011,17(8):2420-2427. doi: 10.1002/chem.201001867

    21. [21]

      Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements[J]. Theor. Chim. Acta, 1990,77(2):123-141. doi: 10.1007/BF01114537

    22. [22]

      Martin J M L, Sundermann A. Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: The Atoms Ga-Kr and In-Xe[J]. J. Chem. Phys., 2001,114(8):3408-3420. doi: 10.1063/1.1337864

    23. [23]

      Kurapkat G, Krüger P, Wollmer A, Fleischhauer J, Kramer B, Zobel E, Koslowski A, Botterweck H, Woody R W. Calculations of the CD Spectrum of Bovine Pancreatic Ribonuclease[J]. Biopolymers, 1997,41(3):267-287. doi: 10.1002/(SICI)1097-0282(199703)41:3<267::AID-BIP3>3.0.CO;2-Q

    24. [24]

      Berova N, Polavarapu P L, Nakanishi K, Woody R W. Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations. New Jersey: John Wiley & Sons, 2012: 525-540

    25. [25]

      Zhang H, Feng L, Gong L, Wu L Q, He G M, Wen T B, Yang F Z, Xia H P. Synthesis and Characterization of Stable Ruthenabenzenes Starting from HC≡CCH(OH)C≡CH[J]. Organometallics, 2007,26(10):2705-2713. doi: 10.1021/om070195k

    26. [26]

      Bosnich B. The Absolute Configurations of Bis-Bidentate Chelate Compounds. The Case of the cis-Bis(pyridine)bis(o-phenanthroline)-Ruthenium(Ⅱ) Ion[J]. Inorg. Chem., 1968,7(1):178-180. doi: 10.1021/ic50059a044

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(4)
  • Abstract views(488)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return