Citation: Xue LI, Hong-Yun XU, Yi-Shu WANG, Yan-Hua SONG, Yan-Juan CUI. Preparation and Photocatalytic Performance of Thiophene-Ring Doped Carbon Nitride Nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 654-664. doi: 10.11862/CJIC.2022.077 shu

Preparation and Photocatalytic Performance of Thiophene-Ring Doped Carbon Nitride Nanosheets

  • Corresponding author: Yan-Juan CUI, yjcui@just.edu.cn
  • Received Date: 5 November 2021
    Revised Date: 6 February 2022

Figures(13)

  • Secondary thermal exfoliation is an effective method to synthesize 2D carbon nitride nanosheets (CNN). Further broadening the visible light response and optimizing the photoelectric conversion efficiency are effective strategies to improve the photocatalytic performance of CNN materials. In this work, we report thiophene-ring doped carbon nitride nanosheet photocatalysts (CNN-Thx) prepared from in situ polymerization doping and secondary thermal exfoliation using 2-aminothiophene-3 -carbonitride as the molecular doping source. Thiophene-ring with excellent chemical properties was stably doped into conjugated CNN nanosheets. After secondary thermal exfoliation, the products maintained 2D hybrid conjugated polymer structures, and the thiophene-ring was still stably doped in the CNN conjugated heterocyclic skeleton. Thiophene-ring doping causes the further expansion of the π-conjugated system, reduces the bandgap, broadens the visible light absorption range, and accelerates the photoelectric conversion efficiency of the catalysts. At the same time, thermal exfoliation cooperated with thiophene doping leads to a more significant n-π* transition, which greatly improves the photocatalytic activity of the catalysts. The results showed that CNN-Thx had significantly enhanced photocatalytic reduction performance, in which the H2 evolution activity of CNN-Th10 reached 322.8 μmol·h-1, and the generated H2O2 concentration reached 223.1 μmol·L-1 after 4 h, which were 3.6 and 22.3 times that of CNN, respectively.
  • 加载中
    1. [1]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8(1):76-80. doi: 10.1038/nmat2317

    2. [2]

      Naseri A, Samadi M, Pourjavadi A, Moshfegh A Z, Ramakrishna S. Graphitic Carbon Nitride (g-C3N4)-based Photocatalysts for Solar Hydrogen Generation: Recent Advances and Future Development Directions[J]. J. Mater. Chem. A, 2017,5(45):23406-23433. doi: 10.1039/C7TA05131J

    3. [3]

      Reddy S S, Aryal U K, Jin H J, Gokulnath T, Rajalapati D G, Kranthiraja K, Shin S T, Jin S H. A New Benzodithiophene Based Donor-Acceptor π-Conjugated Polymer for Organic Solar Cells[J]. Macromol. Res., 2020,28(2):179-183. doi: 10.1007/s13233-020-8079-z

    4. [4]

      Zhang G G, Lan Z A, Wang X C. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2016,55(51):15712-15727. doi: 10.1002/anie.201607375

    5. [5]

      Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K. Poly(p-phenylene)-Catalyzed Photoreduction of Water to Hydrogen[J]. J. Chem. Soc.-Chem. Commun., 1985,8:474-475.

    6. [6]

      Slater A G, Cooper A I. Function-led Design of New Porous Materials[J]. Science, 2015,348(6238)aaa8075. doi: 10.1126/science.aaa8075

    7. [7]

      Shen Q H, Li N X, Bibi R, Richard N, Liu M C, Zhou J C, Jing D W. Incorporating Nitrogen Defects into Novel Few-Layer Carbon Nitride Nanosheets for Enhanced Photocatalytic H2 Production[J]. Appl. Surf. Sci., 2020,529147104. doi: 10.1016/j.apsusc.2020.147104

    8. [8]

      Zhang G G, Savateev A, Zhao Y B, Li L N, Antonietti M. Advancing the nπ* Electron Transition of Carbon Nitride Nanotubes for H2 Photosynthesis[J]. J. Mater. Chem. A, 2017,5(25):12723-12728. doi: 10.1039/C7TA03777E

    9. [9]

      Liu X L, Guo Y H, Wang P, Zhang Q Q, Wang Z Y, Liu Y Y, Zheng Z K, Cheng H F, Dai Y, Huang B B. The Synergy of Thermal Exfoliation and Phosphorus Doping in g-C3N4 for Improved Photocatalytic H2 Generation[J]. Int. J. Hydrogen Energy, 2021,46(5):3595-3604. doi: 10.1016/j.ijhydene.2020.10.233

    10. [10]

      Chen Y S, Yang B, Xie W Y, Zhao X Y, Wang Z, Su X T, Yang C. Combined Soft Templating with Thermal Exfoliation toward Synthesis of Porous g-C3N4 Nanosheets for Improved Photocatalytic Hydrogen Evolution[J]. J. Mater. Res. Technol., 2021,13:301-310. doi: 10.1016/j.jmrt.2021.04.056

    11. [11]

      Bellamkonda S, Shanmugam R, Gangavarapu R R. Extending the π-electron Conjugation in 2D Planar Graphitic Carbon Nitride: Efficient Charge Separation for Overall Water Splitting[J]. J. Mater. Chem. A, 2019,7(8):3757-3771. doi: 10.1039/C8TA10580D

    12. [12]

      Liu J, Yu Y, Qi R L, Cao C Y, Liu X Y, Zheng Y J, Song W G. Enhanced Electron Separation on In-Plane Benzene-Ring Doped g-C3N4 Nanosheets for Visible Light Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B, 2019,244:459-464. doi: 10.1016/j.apcatb.2018.11.070

    13. [13]

      Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymerization[J]. Angew. Chem. Int. Ed., 2010,49(2):441-444. doi: 10.1002/anie.200903886

    14. [14]

      Li M, Zhang S B, Liu X, Han J Y, Zhu X L, Ge Q F, Wang H. Polydo-pamine and Barbituric Acid Comodified Carbon Nitride Nanospheres for Highly Active and Selective Photocatalytic CO2 Reduction[J]. Eur. J. Inorg. Chem., 2019,15(13):2058-2064.

    15. [15]

      Zhang J S, Zhang G G, Chen X F, Lin S, Mohlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Co-monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light[J]. Angew. Chem. Int. Ed., 2012,51:3183-3187. doi: 10.1002/anie.201106656

    16. [16]

      Goker S, Hizalan G, Aktas E, Kutkan S, Cirpan A, Toppare L. 2, 1, 3-Benzooxadiazole, Thiophene and Benzodithiophene based Random Copolymers for Organic Photovoltaics: Thiophene versus Thieno[3, 2-b]Thiophene as π-Conjugated Linkers[J]. New J. Chem., 2016,40(12):10455-10464. doi: 10.1039/C6NJ02469F

    17. [17]

      Zhang K, Tieke B, Forgie J C, Vilela F, Skabara P J. Donor -Acceptor Conjugated Polymers Based on p-and o-Benzodifuranone and Thiophene Derivatives: Electrochemical Preparation and Optical and Electronic Properties[J]. Macromolecules, 2012,45(2):743-750. doi: 10.1021/ma202387t

    18. [18]

      Zhang M W, Wang X C. Two Dimensional Conjugated Polymers with Enhanced Optical Absorption and Charge Separation for Photocatalytic Hydrogen Evolution[J]. Energy Environ. Sci., 2014,7(6):1902-1906. doi: 10.1039/c3ee44189j

    19. [19]

      Ge F Y, Huang S Q, Yan J, Jing L Q, Chen F, Xie M, Xu Y G, Xu H, Li H M. Sulfur Promoted n-π* Electron Transitions in Thiophene-Doped g-C3N4 for Enhanced Photocatalytic Activity[J]. Chin. J. Catal., 2021,42(3):450-459. doi: 10.1016/S1872-2067(20)63674-9

    20. [20]

      Wang L C, Cao S, Guo K, Wu Z J, Ma Z, Piao L Y. Simultaneous Hydrogen and Peroxide Production by Photocatalytic Water Splitting[J]. Chin. J. Catal., 2019,40(3):470-475. doi: 10.1016/S1872-2067(19)63274-2

    21. [21]

      Cui Y J, Wang Y X, Wang H, Cao F, Chen F Y. Polycondensation of Ammonium Thiocyanate into Novel Porous g-C3N4 Nanosheets as Photocatalysts for Enhanced Hydrogen Evolution under Visible Light Irradiation[J]. Chin. J. Catal., 2016,37(11):1899-1906. doi: 10.1016/S1872-2067(16)62509-3

    22. [22]

      Chen Y L, Qu Y, Xu P, Zhou X, Sun J M. Insight into the Influence of Donor-Acceptor System on Graphitic Carbon Nitride Nanosheets for Transport of Photoinduced Charge Carriers and Photocatalytic H2 Generation[J]. J. Colloid Interface Sci., 2021,601:326-337. doi: 10.1016/j.jcis.2021.05.145

    23. [23]

      Fu Y S, Zhu J W, Hu C, Wu X D, Wang X. Covalently Coupled Hybrid of Graphitic Carbon Nitride with Reduced Graphene Oxide as a Superior Performance Lithiumion Battery Anode[J]. Nanoscale, 2014,6(21):12555-12564. doi: 10.1039/C4NR03145H

    24. [24]

      Oh J, Yoo R J, Kim S Y, Lee Y J, Kim D W, Park S. Oxidized Carbon Nitrides: Water-Dispersible, Atomically Thin Carbon Nitride-Based Nanodots and Their Performances as Bioimaging Probes[J]. Chem. Eur. J., 2015,21(16):6241-6246. doi: 10.1002/chem.201406151

    25. [25]

      Liu X, Zong H, Tan X L, Wang X Y, Qiu J, Kong F Y, Zhang J G, Fang S. Facile Synthesis of Modified Carbon Nitride with Enhanced Activity for Photocatalytic Degradation of Atrazine[J]. J. Environ. Chem. Eng., 2021,9(5)105807. doi: 10.1016/j.jece.2021.105807

    26. [26]

      Sathyapalan A, Ng S C, Lohani A, Ong T T, Chen H, Zhang S, Lam Y M, Mhaisalkar S G. Novel Self Assembled Monolayers of Allyl Phenyl Thiophene Ether as Potential Dielectric Material for Organic Thin Film Transistors[J]. Thin Solid Films, 2008,516(16):5645-5648. doi: 10.1016/j.tsf.2007.07.120

    27. [27]

      Nelson A J, Glenis S, Frank A J. XPS and UPS Investigation of PF6 Doped and Undoped Poly 3-Methyl Thiophene[J]. J. Chem. Phys., 1987,87:5002-5006. doi: 10.1063/1.452815

    28. [28]

      Liu G, Niu P, Sun C H, Smith S C, Chen Z G, Lu G Q, Cheng H M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4[J]. J. Am. Chem. Soc., 2010,132(33):11642-11648. doi: 10.1021/ja103798k

    29. [29]

      Zhang M W, Zhang J S, Chen Y, Wang X C. Molecular Pore-Wall Engineering of Mesozeolitic Conjugated Polymers for Photoredox Hydrogen Production with Visible Light[J]. J. Energy Chem., 2017,26(1):87-92. doi: 10.1016/j.jechem.2016.07.004

    30. [30]

      Yang Q, Yang W B, He F F, Liu K W, Cao H M, Yan H J. One-Step Synthesis of Nitrogen-Defective Graphitic Carbon Nitride for Improving Photocatalytic Hydrogen Evolution[J]. J. Hazard. Mater., 2021,410124594. doi: 10.1016/j.jhazmat.2020.124594

    31. [31]

      Li C M, Wu H H, Zhu D Q, Zhou T X, Yan M, Chen G, Sun J X, Dai G, Ge F, Dong H J. High-Efficient Charge Separation Driven Directionally by Pyridine Rings Grafted on Carbon Nitride Edge for Boosting Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B, 2021,297120433. doi: 10.1016/j.apcatb.2021.120433

    32. [32]

      Zhang J S, Zhang M W, Lin S, Fu X Z, Wang X C. Molecular Doping of Carbon Nitride Photocatalysts with Tunable Bandgap and Enhanced Activity[J]. J. Catal., 2014,310:24-30. doi: 10.1016/j.jcat.2013.01.008

    33. [33]

      Jiang Z, Isaacs M A, Huang Z W, Shangguan W F, Deng Y F, Lee A F. Active Site Elucidation and Optimization in Pt Co-catalysts for Photocatalytic Hydrogen Production over Titania[J]. ChemCatChem, 2017,9(22):4268-4274. doi: 10.1002/cctc.201700901

    34. [34]

      Yang J H, Wang D G, Han H X, Li C. Roles of Cocatalysts in Photo-catalysis and Photoelectrocatalysis[J]. Acc. Chem. Res., 2013,46(8):1900-1909. doi: 10.1021/ar300227e

    35. [35]

      Yang L P, Dong G H, Jacobs D L, Wang Y H, Zang L, Wang C Y. Two-Channel Photocatalytic Production of H2O2 over g-C3N4 Nanosheets Modified with Perylene Imides[J]. J. Catal., 2017,352:274-281. doi: 10.1016/j.jcat.2017.05.010

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    17. [17]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    18. [18]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(3)
  • Abstract views(419)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return