Citation: Xue LI, Hong-Yun XU, Yi-Shu WANG, Yan-Hua SONG, Yan-Juan CUI. Preparation and Photocatalytic Performance of Thiophene-Ring Doped Carbon Nitride Nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 654-664. doi: 10.11862/CJIC.2022.077 shu

Preparation and Photocatalytic Performance of Thiophene-Ring Doped Carbon Nitride Nanosheets

  • Corresponding author: Yan-Juan CUI, yjcui@just.edu.cn
  • Received Date: 5 November 2021
    Revised Date: 6 February 2022

Figures(13)

  • Secondary thermal exfoliation is an effective method to synthesize 2D carbon nitride nanosheets (CNN). Further broadening the visible light response and optimizing the photoelectric conversion efficiency are effective strategies to improve the photocatalytic performance of CNN materials. In this work, we report thiophene-ring doped carbon nitride nanosheet photocatalysts (CNN-Thx) prepared from in situ polymerization doping and secondary thermal exfoliation using 2-aminothiophene-3 -carbonitride as the molecular doping source. Thiophene-ring with excellent chemical properties was stably doped into conjugated CNN nanosheets. After secondary thermal exfoliation, the products maintained 2D hybrid conjugated polymer structures, and the thiophene-ring was still stably doped in the CNN conjugated heterocyclic skeleton. Thiophene-ring doping causes the further expansion of the π-conjugated system, reduces the bandgap, broadens the visible light absorption range, and accelerates the photoelectric conversion efficiency of the catalysts. At the same time, thermal exfoliation cooperated with thiophene doping leads to a more significant n-π* transition, which greatly improves the photocatalytic activity of the catalysts. The results showed that CNN-Thx had significantly enhanced photocatalytic reduction performance, in which the H2 evolution activity of CNN-Th10 reached 322.8 μmol·h-1, and the generated H2O2 concentration reached 223.1 μmol·L-1 after 4 h, which were 3.6 and 22.3 times that of CNN, respectively.
  • 加载中
    1. [1]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8(1):76-80. doi: 10.1038/nmat2317

    2. [2]

      Naseri A, Samadi M, Pourjavadi A, Moshfegh A Z, Ramakrishna S. Graphitic Carbon Nitride (g-C3N4)-based Photocatalysts for Solar Hydrogen Generation: Recent Advances and Future Development Directions[J]. J. Mater. Chem. A, 2017,5(45):23406-23433. doi: 10.1039/C7TA05131J

    3. [3]

      Reddy S S, Aryal U K, Jin H J, Gokulnath T, Rajalapati D G, Kranthiraja K, Shin S T, Jin S H. A New Benzodithiophene Based Donor-Acceptor π-Conjugated Polymer for Organic Solar Cells[J]. Macromol. Res., 2020,28(2):179-183. doi: 10.1007/s13233-020-8079-z

    4. [4]

      Zhang G G, Lan Z A, Wang X C. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2016,55(51):15712-15727. doi: 10.1002/anie.201607375

    5. [5]

      Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K. Poly(p-phenylene)-Catalyzed Photoreduction of Water to Hydrogen[J]. J. Chem. Soc.-Chem. Commun., 1985,8:474-475.

    6. [6]

      Slater A G, Cooper A I. Function-led Design of New Porous Materials[J]. Science, 2015,348(6238)aaa8075. doi: 10.1126/science.aaa8075

    7. [7]

      Shen Q H, Li N X, Bibi R, Richard N, Liu M C, Zhou J C, Jing D W. Incorporating Nitrogen Defects into Novel Few-Layer Carbon Nitride Nanosheets for Enhanced Photocatalytic H2 Production[J]. Appl. Surf. Sci., 2020,529147104. doi: 10.1016/j.apsusc.2020.147104

    8. [8]

      Zhang G G, Savateev A, Zhao Y B, Li L N, Antonietti M. Advancing the nπ* Electron Transition of Carbon Nitride Nanotubes for H2 Photosynthesis[J]. J. Mater. Chem. A, 2017,5(25):12723-12728. doi: 10.1039/C7TA03777E

    9. [9]

      Liu X L, Guo Y H, Wang P, Zhang Q Q, Wang Z Y, Liu Y Y, Zheng Z K, Cheng H F, Dai Y, Huang B B. The Synergy of Thermal Exfoliation and Phosphorus Doping in g-C3N4 for Improved Photocatalytic H2 Generation[J]. Int. J. Hydrogen Energy, 2021,46(5):3595-3604. doi: 10.1016/j.ijhydene.2020.10.233

    10. [10]

      Chen Y S, Yang B, Xie W Y, Zhao X Y, Wang Z, Su X T, Yang C. Combined Soft Templating with Thermal Exfoliation toward Synthesis of Porous g-C3N4 Nanosheets for Improved Photocatalytic Hydrogen Evolution[J]. J. Mater. Res. Technol., 2021,13:301-310. doi: 10.1016/j.jmrt.2021.04.056

    11. [11]

      Bellamkonda S, Shanmugam R, Gangavarapu R R. Extending the π-electron Conjugation in 2D Planar Graphitic Carbon Nitride: Efficient Charge Separation for Overall Water Splitting[J]. J. Mater. Chem. A, 2019,7(8):3757-3771. doi: 10.1039/C8TA10580D

    12. [12]

      Liu J, Yu Y, Qi R L, Cao C Y, Liu X Y, Zheng Y J, Song W G. Enhanced Electron Separation on In-Plane Benzene-Ring Doped g-C3N4 Nanosheets for Visible Light Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B, 2019,244:459-464. doi: 10.1016/j.apcatb.2018.11.070

    13. [13]

      Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X Z, Antonietti M, Wang X C. Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymerization[J]. Angew. Chem. Int. Ed., 2010,49(2):441-444. doi: 10.1002/anie.200903886

    14. [14]

      Li M, Zhang S B, Liu X, Han J Y, Zhu X L, Ge Q F, Wang H. Polydo-pamine and Barbituric Acid Comodified Carbon Nitride Nanospheres for Highly Active and Selective Photocatalytic CO2 Reduction[J]. Eur. J. Inorg. Chem., 2019,15(13):2058-2064.

    15. [15]

      Zhang J S, Zhang G G, Chen X F, Lin S, Mohlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Co-monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light[J]. Angew. Chem. Int. Ed., 2012,51:3183-3187. doi: 10.1002/anie.201106656

    16. [16]

      Goker S, Hizalan G, Aktas E, Kutkan S, Cirpan A, Toppare L. 2, 1, 3-Benzooxadiazole, Thiophene and Benzodithiophene based Random Copolymers for Organic Photovoltaics: Thiophene versus Thieno[3, 2-b]Thiophene as π-Conjugated Linkers[J]. New J. Chem., 2016,40(12):10455-10464. doi: 10.1039/C6NJ02469F

    17. [17]

      Zhang K, Tieke B, Forgie J C, Vilela F, Skabara P J. Donor -Acceptor Conjugated Polymers Based on p-and o-Benzodifuranone and Thiophene Derivatives: Electrochemical Preparation and Optical and Electronic Properties[J]. Macromolecules, 2012,45(2):743-750. doi: 10.1021/ma202387t

    18. [18]

      Zhang M W, Wang X C. Two Dimensional Conjugated Polymers with Enhanced Optical Absorption and Charge Separation for Photocatalytic Hydrogen Evolution[J]. Energy Environ. Sci., 2014,7(6):1902-1906. doi: 10.1039/c3ee44189j

    19. [19]

      Ge F Y, Huang S Q, Yan J, Jing L Q, Chen F, Xie M, Xu Y G, Xu H, Li H M. Sulfur Promoted n-π* Electron Transitions in Thiophene-Doped g-C3N4 for Enhanced Photocatalytic Activity[J]. Chin. J. Catal., 2021,42(3):450-459. doi: 10.1016/S1872-2067(20)63674-9

    20. [20]

      Wang L C, Cao S, Guo K, Wu Z J, Ma Z, Piao L Y. Simultaneous Hydrogen and Peroxide Production by Photocatalytic Water Splitting[J]. Chin. J. Catal., 2019,40(3):470-475. doi: 10.1016/S1872-2067(19)63274-2

    21. [21]

      Cui Y J, Wang Y X, Wang H, Cao F, Chen F Y. Polycondensation of Ammonium Thiocyanate into Novel Porous g-C3N4 Nanosheets as Photocatalysts for Enhanced Hydrogen Evolution under Visible Light Irradiation[J]. Chin. J. Catal., 2016,37(11):1899-1906. doi: 10.1016/S1872-2067(16)62509-3

    22. [22]

      Chen Y L, Qu Y, Xu P, Zhou X, Sun J M. Insight into the Influence of Donor-Acceptor System on Graphitic Carbon Nitride Nanosheets for Transport of Photoinduced Charge Carriers and Photocatalytic H2 Generation[J]. J. Colloid Interface Sci., 2021,601:326-337. doi: 10.1016/j.jcis.2021.05.145

    23. [23]

      Fu Y S, Zhu J W, Hu C, Wu X D, Wang X. Covalently Coupled Hybrid of Graphitic Carbon Nitride with Reduced Graphene Oxide as a Superior Performance Lithiumion Battery Anode[J]. Nanoscale, 2014,6(21):12555-12564. doi: 10.1039/C4NR03145H

    24. [24]

      Oh J, Yoo R J, Kim S Y, Lee Y J, Kim D W, Park S. Oxidized Carbon Nitrides: Water-Dispersible, Atomically Thin Carbon Nitride-Based Nanodots and Their Performances as Bioimaging Probes[J]. Chem. Eur. J., 2015,21(16):6241-6246. doi: 10.1002/chem.201406151

    25. [25]

      Liu X, Zong H, Tan X L, Wang X Y, Qiu J, Kong F Y, Zhang J G, Fang S. Facile Synthesis of Modified Carbon Nitride with Enhanced Activity for Photocatalytic Degradation of Atrazine[J]. J. Environ. Chem. Eng., 2021,9(5)105807. doi: 10.1016/j.jece.2021.105807

    26. [26]

      Sathyapalan A, Ng S C, Lohani A, Ong T T, Chen H, Zhang S, Lam Y M, Mhaisalkar S G. Novel Self Assembled Monolayers of Allyl Phenyl Thiophene Ether as Potential Dielectric Material for Organic Thin Film Transistors[J]. Thin Solid Films, 2008,516(16):5645-5648. doi: 10.1016/j.tsf.2007.07.120

    27. [27]

      Nelson A J, Glenis S, Frank A J. XPS and UPS Investigation of PF6 Doped and Undoped Poly 3-Methyl Thiophene[J]. J. Chem. Phys., 1987,87:5002-5006. doi: 10.1063/1.452815

    28. [28]

      Liu G, Niu P, Sun C H, Smith S C, Chen Z G, Lu G Q, Cheng H M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4[J]. J. Am. Chem. Soc., 2010,132(33):11642-11648. doi: 10.1021/ja103798k

    29. [29]

      Zhang M W, Zhang J S, Chen Y, Wang X C. Molecular Pore-Wall Engineering of Mesozeolitic Conjugated Polymers for Photoredox Hydrogen Production with Visible Light[J]. J. Energy Chem., 2017,26(1):87-92. doi: 10.1016/j.jechem.2016.07.004

    30. [30]

      Yang Q, Yang W B, He F F, Liu K W, Cao H M, Yan H J. One-Step Synthesis of Nitrogen-Defective Graphitic Carbon Nitride for Improving Photocatalytic Hydrogen Evolution[J]. J. Hazard. Mater., 2021,410124594. doi: 10.1016/j.jhazmat.2020.124594

    31. [31]

      Li C M, Wu H H, Zhu D Q, Zhou T X, Yan M, Chen G, Sun J X, Dai G, Ge F, Dong H J. High-Efficient Charge Separation Driven Directionally by Pyridine Rings Grafted on Carbon Nitride Edge for Boosting Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B, 2021,297120433. doi: 10.1016/j.apcatb.2021.120433

    32. [32]

      Zhang J S, Zhang M W, Lin S, Fu X Z, Wang X C. Molecular Doping of Carbon Nitride Photocatalysts with Tunable Bandgap and Enhanced Activity[J]. J. Catal., 2014,310:24-30. doi: 10.1016/j.jcat.2013.01.008

    33. [33]

      Jiang Z, Isaacs M A, Huang Z W, Shangguan W F, Deng Y F, Lee A F. Active Site Elucidation and Optimization in Pt Co-catalysts for Photocatalytic Hydrogen Production over Titania[J]. ChemCatChem, 2017,9(22):4268-4274. doi: 10.1002/cctc.201700901

    34. [34]

      Yang J H, Wang D G, Han H X, Li C. Roles of Cocatalysts in Photo-catalysis and Photoelectrocatalysis[J]. Acc. Chem. Res., 2013,46(8):1900-1909. doi: 10.1021/ar300227e

    35. [35]

      Yang L P, Dong G H, Jacobs D L, Wang Y H, Zang L, Wang C Y. Two-Channel Photocatalytic Production of H2O2 over g-C3N4 Nanosheets Modified with Perylene Imides[J]. J. Catal., 2017,352:274-281. doi: 10.1016/j.jcat.2017.05.010

  • 加载中
    1. [1]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    8. [8]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    10. [10]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(6)
  • Abstract views(974)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return