Citation: Liang-Feng PAN, Xin YAN, Chao-Li WANG, Ming XIE, Zhuo LI, Tao AI, Yan-Hui NIU. Preparation and Visible Light Photocatalytic Activity of Hollow Tubular g-C3N4/Ag3PO4 Composite Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 695-704. doi: 10.11862/CJIC.2022.076 shu

Preparation and Visible Light Photocatalytic Activity of Hollow Tubular g-C3N4/Ag3PO4 Composite Catalyst

  • Corresponding author: Xin YAN, xinyan@chd.edu.cn
  • Received Date: 17 November 2021
    Revised Date: 22 February 2022

Figures(8)

  • Hollow tubular g-C3N4/Ag3PO4 composite catalyst was prepared by chemical precipitation method. The structure, morphology, and optical properties of the composite catalyst were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and fluores- cence emission spectroscopy. The results showed that Ag3PO4 nanoparticles can be uniformly dispersed on the surface of hollow tubular g-C3N4, and closely combined to form a heterojunction. The photocatalytic activity of the composite catalyst under visible light irradiation was studied by the degradation of tetracycline hydrochloride (TC). The results showed that the degradation rate of TC over the hollow tubular g-C3N4/Ag3PO4 composite catalyst was 98% within 80 min, and its degradation reaction rate constant was three times that of pure Ag3PO4. After five cycles, the degradation rate of TC by the composite catalyst maintained 87%, indicating excellent stability. The capture experiment showed that hole (h+) and superoxide anion (·O2-) were the main active species in the photocatalytic reaction. Based on the energy band theory, the Z-scheme photocatalytic mechanism of g-C3N4/Ag3PO4 composite catalyst heterojunction was proposed.
  • 加载中
    1. [1]

      Hao R, Xiao X, Zuo X X, Nan J M, Zhang W D. Efficient Adsorption and Visible-Light Photocatalytic Degradation of Tetracycline Hydrochloride using Mesoporous BiOI Microspheres[J]. J. Hazard. Mater., 2012,209-210:137-145. doi: 10.1016/j.jhazmat.2012.01.006

    2. [2]

      Sarmaha A K, Meyer M T, Boxall B A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment[J]. Chemosphere, 2006,65(5):725-759. doi: 10.1016/j.chemosphere.2006.03.026

    3. [3]

      Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances[J]. Chem. Soc. Rev., 2014,45(15):5234-5244.

    4. [4]

      ZHAO M X, MENG Z, LI H P, MA Z Q, ZHAN H J, LIU W Y. Photodegradation of Antibiotic in Environmental Water by Graphene Oxide Modulation Bismuth Molybdate under Visible Light Irradiation[J]. Chem. J. Chinese Universities, 2020,41(11):2479-2487.  

    5. [5]

      Li Z S, Luo W J, Zhang M L, Feng J Y, Zou Z G. Photoelectrochemical Cells for Solar Hydrogen Production: Current State of Promising Photoelectrodes, Methods to Improve Their Properties, and Outlook[J]. Energy Environ. Sci., 2013,6:347-370. doi: 10.1039/C2EE22618A

    6. [6]

      Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem. Rev., 2014,114(19):9987-10043.

    7. [7]

      Liu G, Sun C H, Cheng L, Jin Y G, Lu H F, Wang L Z, Smith S C, Lu G Q, Cheng H M. Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti-O-B-N Structures[J]. J. Phys. Chem. C, 2009,113(28):12317-12324. doi: 10.1021/jp900511u

    8. [8]

      Hernández-Alonso M D, Fresno F, Suárez S, Coronado J M. Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities[J]. Energy Environ. Sci., 2009,2:1231-1257. doi: 10.1039/b907933e

    9. [9]

      Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. An ortho-Phosphate Semiconductor with Photooxidation Properties under Visible-Light Irradiation[J]. Nat. Mater., 2010,9:559-564. doi: 10.1038/nmat2780

    10. [10]

      Lu B Q, Ma N, Wang Y P, Qiu Y W, Hu H H, Zhao J H, Liang D Y, Xu S, Li X Y, Zhu Z Y, Cui C. Visible-Light-Driven TiO2/Ag3PO4/GO Heterostructure Photocatalyst with Dual-Channel for Photo-Generated Charges Separation[J]. J. Alloys Compd., 2015,630(5):163-171.

    11. [11]

      WANG X G, LIU K, ZHU H, LI C Y, LIN L L, GUO F, DAI H L. MoSe2/Ag3PO4 Composites: Preparation and Photocatalytic Properties for Degradation of Rhodamine B under Visible Light[J]. Chinese J. Inorg. Chem., 2021,37(2):327-339.  

    12. [12]

      Du C Y, Song J H, Tan S Y, Yang L, Yu G L, Chen H, Zhou L, Zhang Z, Zhang Y, Su Y H, Wen X F, Wang S T. Facile Synthesis of Z-Scheme ZnO/Ag/Ag3PO4 Composite Photocatalysts with Enhanced Performance for the Degradation of Ciprofloxacin[J]. Mater. Chem. Phys., 2021,260(34)124136.

    13. [13]

      Zhang L L, Zhang H C, Huang H, Liu Y, Kang Z H. Ag3PO4/SnO2 Semiconductor Nanocomposites with Enhanced Photocatalytic Activity and Stability[J]. New J. Chem., 2012,36(8):1541-1544. doi: 10.1039/c2nj40206h

    14. [14]

      Mousavi M, Habibi-Yangjeh A. Novel Magnetically Separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 Nanocomposites: Visible-Light-Driven Photocatalysts with Highly Enhanced Activity[J]. Adv. Powder Technol., 2017,28(6):1540-1553. doi: 10.1016/j.apt.2017.03.025

    15. [15]

      Zhou L, Zhang W, Chen L, Deng H P, Wan J L. A Novel Ternary Visible-Light-Driven Photocatalyst AgCl/Ag3PO4/g-C3N4: Synthesis, Characterization, Photocatalytic Activity for Antibiotic Degradation and Mechanism Analysis[J]. Catal. Commun., 2017,100:191-195. doi: 10.1016/j.catcom.2017.06.049

    16. [16]

      YA NX, HUI XY, GA OQ, YU GJ, MO YC, YE ZM, LI JC, MAZ Y, SUN G D. Synthesis and Visible Light Photocatalytic Performance of Ag3PO4/MoS2 Nanosheets Composite Photocatalyst[J]. Chinese J. Inorg. Chem., 2017,33(10):1782-1788. doi: 10.11862/CJIC.2017.212 

    17. [17]

      Li J W, Yang X Q, Ma C R, Lei Y, Cheng Z Y, Rui Z B. Selectively Recombining the Photoinduced Charges in Bandgap-Broken Ag3PO4/GdCrO3 with a Plasmonic Ag Bridge for Efficient Photothermocatalytic VOCs Degradation and CO2 Reduction[J]. Appl. Catal. B, 2021,291120053. doi: 10.1016/j.apcatb.2021.120053

    18. [18]

      Haounati R, El Guerdaoui A, Ouachtak H, El Haouti R, Bouddouch A, Hafid N, Bakiz B, Santos D M F, Labd Taha M, Addi A A. Design of Direct Z-Scheme Superb Magnetic Nanocomposite Photocatalyst Fe3O4/Ag3PO4@Sep for Hazardous Dye Degradation[J]. Sep. Purif. Technol., 2021,277119399. doi: 10.1016/j.seppur.2021.119399

    19. [19]

      Wan J, Du X, Liu E Z, Hu Y, Fan J, Hu X Y. Z-Scheme Visible-Light-Driven Ag3PO4 Nanoparticle@MoS2 Quantum Dot/Few-Layered MoS2 Nanosheet Heterostructures with High Efficiency and Stability for Photocatalytic Selective Oxidation[J]. J. Catal., 2017,345:281-294. doi: 10.1016/j.jcat.2016.11.013

    20. [20]

      Bu Y Y, Chen Z Y, Sun C J. Highly Efficient Z-Scheme Ag3PO4/Ag/ WO3-x Photocatalyst for Its Enhanced Photocatalytic Performance[J]. Appl. Catal. B, 2015,179:363-371. doi: 10.1016/j.apcatb.2015.05.045

    21. [21]

      Chen S, Huang D L, Zeng G M, Xue W J, Lei L, Xu P, Deng R, Li J, Cheng M. In-Situ Synthesis of Facet-Dependent BiVO4/Ag3PO4/ PANI Photocatalyst with Enhanced Visible-Light-Induced Photocatalytic Degradation Performance: Synergism of Interfacial Coupling and Hole-Transfer[J]. Chem. Eng. J., 2020,382122840. doi: 10.1016/j.cej.2019.122840

    22. [22]

      Xiang Q J, Yu J G, Jaroniec M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites[J]. J. Phys. Chem. C, 2011,115(15):7355-7363. doi: 10.1021/jp200953k

    23. [23]

      Yan X, Li J T, Zhou H F. Molten Salts Synthesis and Visible Light Photocatalytic Activity of Crystalline Poly(triazine imide) with Different Morphologies[J]. J. Mater. Sci.: Mater Electron., 2019,167(1/2/3):418-426.

    24. [24]

      Wang Y, Li G S, Zhang Y L, Li L P, Shang M Y. Layer-by-Layer Assembly into Bulk-like g-C3N4 via Artificial Manipulation of Electrostatic Forces[J]. Chem. Commun., 2020,56:15663-15666. doi: 10.1039/D0CC05851C

    25. [25]

      Wang X H, Nan Z D. Highly Efficient Fenton-like Catalyst Fe-g-C3N4 Porous Nanosheets Formation and Catalytic Mechanism[J]. Sep. Purif. Technol., 2020,233116023. doi: 10.1016/j.seppur.2019.116023

    26. [26]

      Liang Q H, Liu X J, Wang J J, Liu Y, Liu Z F, Tang L, Shao B B, Zhang W, Gong S X, Cheng M, He Q Y, Feng C Y. In-Situ Self-Assembly Construction of Hollow Tubular g-C3N4 Isotype Heterojunction for Enhanced Visible-Light Photocatalysis: Experiments and Theories[J]. J. Hazard. Mater., 2021,401123355. doi: 10.1016/j.jhazmat.2020.123355

    27. [27]

      Chai B, Zou F Y, Chen W J. Facile Synthesis of Ag3PO4/C3N4 Composites with Improved Visible Light Photocatalytic Activity[J]. J. Mater. Res., 2015,30(8):1128-1136. doi: 10.1557/jmr.2015.91

    28. [28]

      Liu L, Qi Y H, Lu J R, Lin S L, An W J, Liang Y H, Cui W Q. A Stable Ag3PO4@g-C3N4 Hybrid Core@Shell Composite with Enhanced Visible Light Photocatalytic Degradation[J]. Appl. Catal. B, 2016,183:133-141. doi: 10.1016/j.apcatb.2015.10.035

    29. [29]

      Zhang J F, Lv J L, Dai K, Liu Q, Liang C H, Zhu G P. Facile and Green Synthesis of Novel Porous g-C3N4/Ag3PO4 Composite with Enhanced Visible Light Photocatalysis[J]. Ceram. Int., 2017,43(1):1522-1529. doi: 10.1016/j.ceramint.2016.10.125

    30. [30]

      Zhao Z H, Fan J M, Liu W H, Xue Y Q, Yin S. In-Situ Hydrothermal Synthesis of Ag3PO4/g-C3N4 Composite and Their Photocatalytic Decomposition of NOx[J]. J. Alloys Compd., 2017,695:2812-2819. doi: 10.1016/j.jallcom.2016.12.001

    31. [31]

      Guo F, Cai Y, Guan W S, Shi W D. Ag3PO4 Nanoparticles Decorated on Sheet-on-Sheet Structured g-C3N4/Znln2S4 for Enhanced Photocatalytic Activity[J]. Mater. Lett., 2017,201:62-65. doi: 10.1016/j.matlet.2017.04.142

    32. [32]

      Zheng J F, Li L, Dai Z Y, Tian Y L, Fang T, Xin S T, Zhu B C, Liu Z J, Nie L H. A Novel Fenton-like Catalyst of Ag3PO4/g-C3N4: Its Performance and Mechanism for Tetracycline Hydrochloride Degradation in Dark[J]. Appl. Surf. Sci., 2022,571151305. doi: 10.1016/j.apsusc.2021.151305

    33. [33]

      Mukhair H M, Abdullah A H, Zainal Z, Lim H. PES-Ag3PO4/g-C3N4 Mixed Matrix Film Photocatalyst for Degradation of Methyl Orange Dye[J]. Polymers, 2021,13(11)1746. doi: 10.3390/polym13111746

    34. [34]

      Ham Y, Maeda K, Cha D, Takanabe K, Domen K. Synthesis and Photocatalytic Activity of Poly(triazine imide)[J]. Chem. Asian J., 2013,8(1):218-224. doi: 10.1002/asia.201200781

    35. [35]

      Schwinghammer K, Mesch M B, Duppel V, Ziegler C, Senker J, Lotsch B V. Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution[J]. J. Am. Chem. Soc., 2014,136(5):1730-1733. doi: 10.1021/ja411321s

    36. [36]

      Liu L, Shi Q, Yin N, Zhang M, Liu X, Zheng H, Wu G T, Chen P. Enhanced Room-Temperature Ferromagnetic Properties in Ultrathin Two-Dimensional Metal-Free Poly(triazine imide) Nanosheets[J]. Carbon, 2017,124:486-491. doi: 10.1016/j.carbon.2017.09.009

    37. [37]

      Chai B, Peng T Y, Mao J, Li K, Zan L. Graphitic Carbon Nitride (g-C3N4)-Pt-TiO2 Nanocomposite as an Efficient Photocatalyst for Hydrogen Production under Visible Light Irradiation[J]. Phys. Chem. Chem. Phys., 2012,14:16745-16752. doi: 10.1039/c2cp42484c

    38. [38]

      Lin Q Y, Li L, Liang S J, Liu M H, Bi J H, Wu L. Efficient Synthesis of Monolayer Carbon Nitride 2D Nanosheet with Tunable Concentration and Enhanced Visible-Light Photocatalytic Activities[J]. Appl. Catal. B, 2015,163:135-142. doi: 10.1016/j.apcatb.2014.07.053

    39. [39]

      Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C, Ajayan P M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light[J]. Adv. Mater., 2013,25:2452-2456. doi: 10.1002/adma.201204453

    40. [40]

      Cao W R, Gui Z Y, Chen L F, Zhu X D, Qi Z Z. Facile Synthesis of Sulfate-Doped Ag3PO4 with Enhanced Visible Light Photocatalystic Activity[J]. Appl. Catal. B, 2017,200:681-689. doi: 10.1016/j.apcatb.2016.07.030

    41. [41]

      Tian J, Yan T J, Qiao Z, Wang L L, Li W J, You J M, Huang B B. Anion-Exchange Synthesis of Ag2S/Ag3PO4 Core/Shell Composites with Enhanced Visible and NIR Light Photocatalytic Performance and the Photocatalytic Mechanisms[J]. Appl. Catal. B, 2017,209:566-578. doi: 10.1016/j.apcatb.2017.03.022

    42. [42]

      Yan X, Gao Q, Qin J, Hui X Y, Ye Z M, Li J C, Ma Z Y. A Facile Method for Fabricating TiO2/g-C3N4 Hollow Nanotube Heterojunction and Its Visible Light Photocatalytic Performance[J]. Mater. Lett., 2018,217:1-4. doi: 10.1016/j.matlet.2017.12.142

    43. [43]

      Yan X, Qin J, Ning G T, Li J T, Ai T, Su X H, Wang Z J. A Novel Poly(triazine imide) Hollow Tube/ZnO Heterojunction for Tetracycline Hydrochloride Degradation under Visible Light Irradiation[J]. Adv. Powder. Technol., 2019,30:359-365. doi: 10.1016/j.apt.2018.11.013

    44. [44]

      Yuan Q, Chen L, Xiong M, He J, Luo S L, Au C T, Yin S F. Cu2O/ BiVO4 Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr under Visible Light[J]. Chem. Eng. J., 2014,255:394-402. doi: 10.1016/j.cej.2014.06.031

    45. [45]

      Zhou L, Zhang W, Chen L, Deng H P. Z-Scheme Mechanism of Photogenerated Carriers for Hybrid Photocatalyst Ag3PO4/g-C3N4 in Degradation of Sulfamethoxazole[J]. J. Colloid Interface Sci., 2017,487:410-417. doi: 10.1016/j.jcis.2016.10.068

    46. [46]

      Sun M, Zeng Q, Zhao X, Shao Y, Ji P G, Wang C Q, Yan T, Du B. Fabrication of Novel g-C3N4 Nanocrystals Decorated Ag3PO4 Hybrids: Enhanced Charge Separation and Excellent Visible-Light Driven Photocatalytic Activity[J]. J. Hazard. Mater., 2017,339:9-21. doi: 10.1016/j.jhazmat.2017.06.003

  • 加载中
    1. [1]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(4)
  • Abstract views(616)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return