Citation: Bei-Bei YANG, Yan-Yan DU, Yu-Lin ZHANG, Ting-Ting CHEN, Duan BIN, Hong-Bin LU, Yong-Yao XIA. Electrochemical Performance of Ti3C2Tx/MnO2 Cathode in Aqueous Zinc Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 578-588. doi: 10.11862/CJIC.2022.075 shu

Electrochemical Performance of Ti3C2Tx/MnO2 Cathode in Aqueous Zinc Ion Batteries

Figures(7)

  • Owing to the advantages of large specific capacity, high work potential, rich reserves, and low price, manganese dioxide (MnO2) material has become the most potential material for the cathode in aqueous zinc batteries (AZBs). However, it still has problems with poor structural stability and complex electrochemical storage mechanism. Herein, a kind of Ti3C2Tx/MnO2 composite material based on bract - liked structural of MnO2 deposited on Ti3C2Tx was prepared by a two-step method, and the structure, composition, and morphology of the composite were characterized by X - ray powder diffraction (XRD), X - ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The zinc storage performance of Ti3C2Tx/MnO2 cathode were evaluated in different aqueous electrolyte (2 mol·L-1 ZnSO4, 2 mol·L-1 ZnSO4+0.1 mol·L-1 MnSO4, 30 mol·L-1 tetraethylammonium triflate (TEAOTf)+1 mol·L-1 ZnCF3SO3 (ZnOTf), 3 mol·L-1 ZnOTf), respectively. As a result, Ti3C2Tx/MnO2 cathode displayed two obvious discharge platforms in 2 mol·L-1 ZnSO4 and 2 mol·L-1 ZnSO4+0.1 mol·L-1 MnSO4 solution, which is attributed to the co-insertion of H+ and Zn2+ due to the weak acidic electrolyte. The initial platform region at 1.0 V occurred in the first step is the insertion of H+, and the subsequent reaction is the insertion of Zn2+ into Ti3C2Tx/MnO2 electrode. However, in the neutral of 3 mol·L-1 ZnOTf and 30 mol·L-1 TEAOTf+1 mol·L-1 ZnOTf electrolyte, the insertion of H+ into the Ti3C2Tx/MnO2 cathode hardly appears, and the obtained discharge capacity may mainly come from the intercalation of Zn2+. Moreover, the utilization of ultra -high concentration electrolyte could not only improve the reversibility of Ti3C2Tx/MnO2 electrode material but also effectively inhibit the dissolution of electrode material in the cycling process (78.2% capacity retention after 100 cycles at 0.2 A·g-1).
  • 加载中
    1. [1]

      Li W, Dahn J R, Wainwright D S. Rechargeable Lithium Batteries with Aqueous Electrolytes[J]. Science, 1994,264:1115-1118. doi: 10.1126/science.264.5162.1115

    2. [2]

      Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K. Aqueous Rechargeable Li and Na Ion Batteries[J]. Chem. Rev., 2014,114:11636-11682. doi: 10.1021/cr500192f

    3. [3]

      Bin D, Wang F, Tamirat A G, Suo L M, Wang Y G, Wang C S, Xia Y Y. Progress in Aqueous Rechargeable Sodium - Ion Batteries[J]. Adv. Energy. Mater., 2018,81703008. doi: 10.1002/aenm.201703008

    4. [4]

      Shi X D, Xu Z M, Han C, Shi R Z, Wu X W, Lu B G, Zhou J, Liang S Q. Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen - Doped Graphitized Carbon for Fast and Durable Potassium Storage[J]. Nano-Micro Lett., 2021,1321. doi: 10.1007/s40820-020-00534-x

    5. [5]

      Cui J, Guo Z W, Yi J, Liu X Y, Wu K, Liang P C, Li Q, Liu Y Y, Wang Y G, Xia Y Y, Zhang J J. Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives[J]. ChemSusChem, 2020,132160. doi: 10.1002/cssc.201903265

    6. [6]

      Liu X Y, Fang Y Z, Liang P P, Xu J H, Xing B, Zhu K, Liu Y Y, Zhang J J, Yi J. Surface - Tuned Two - Dimension MXene Scaffold for Highly Reversible Zinc Metal Anode[J]. Chin. Chem. Lett., 2021,32:2899-2903. doi: 10.1016/j.cclet.2021.02.055

    7. [7]

      Tang B Y, Shan L T, Liang S Q, Zhou J. Issues and Opportunities Facing Aqueous Zinc - Ion Batteries[J]. Energy Environ. Sci., 2019,12:3288-3304. doi: 10.1039/C9EE02526J

    8. [8]

      HUANG J T, ZHOU J, LIANG S Q. Guest Pre-intercalation Strategy Boosting the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes[J]. Acta Phys.-Chim. Sin., 2020,372005020.  

    9. [9]

      Fang G Z, Zhou J, Pan A Q, Liang S Q. Recent Advances in Aqueous Zinc-Ion Batteries[J]. ACS Energy Lett., 2018,3:2480-2501. doi: 10.1021/acsenergylett.8b01426

    10. [10]

      Song M, Tan H, Chao D L, Fan H J. Recent Advances in Zn - Ion Batteries[J]. Adv. Funct. Mater., 2018,281802564. doi: 10.1002/adfm.201802564

    11. [11]

      HENG Y L, GU Z Y, GUO J Z, WU X L. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries[J]. Acta Phys.-Chim. Sin., 2021,372005013.  

    12. [12]

      Liu N, Li B, He Z X, Dai L, Wang H Y, Wang L. Recent Advances and Perspectives on Vanadium and Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries[J]. J. Energy Chem., 2021,59:134-159. doi: 10.1016/j.jechem.2020.10.044

    13. [13]

      Zhang L Y, Chen L, Zhou X F, Liu Z P. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System[J]. Adv. Energy Mater., 2015,5400930.

    14. [14]

      ZHANG L, WANG W F, ZHANG H M, HAN S M, WANG L M. Research Progress and Challenge of Aqueous Zinc Ion Battery[J]. Acta Chim. Sinica, 2021,79:158-175.  

    15. [15]

      Xu C J, Li B H, Du H D, Kang F Y. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery[J]. Angew. Chem. Int. Ed., 2012,51:933-935. doi: 10.1002/anie.201106307

    16. [16]

      Alfaruqi M H, Mathew V, Gim J, Kim S, Song J J, Baboo J P, Choi S H, Kim J. Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System[J]. Chem. Mater., 2015,10:3609-3620.

    17. [17]

      Lee B, Lee H R, Kim H, Chung K Y, Cho B W, Oh S H. Elucidating the Intercalation Mechanism of Zinc Ions into α-MnO2 for Rechargeable Zinc Batteries[J]. Chem. Commun., 2015,51:9265-9268. doi: 10.1039/C5CC02585K

    18. [18]

      Pan H, Ellis J F, Li X, Nie Z, Chang H J, Reed D. Electrolyte Effect on the Electrochemical Performance of Mild Aqueous Zinc-Electrolytic Manganese Dioxide Batteries[J]. ACS Appl. Mater. Interfaces., 2019,11:37524-37530. doi: 10.1021/acsami.9b09252

    19. [19]

      Zhou S H, Wu X W, Xiang Y H, Zhu L, Liu Z X, Zhao C X. Manganese- Based Cathode Materials for Aqueous Zinc Ion Batteries[J]. Prog. Chem., 2021,33:649-669.

    20. [20]

      Tang F, Gao J Y, Ruan Q Y, Wu X W, Wu X S, Zhang T, Liu Z X, Xiang Y H, He Z Q, Wu X M. Graphene- Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc Ion Batteries[J]. Electrochim. Acta, 2020,353136570. doi: 10.1016/j.electacta.2020.136570

    21. [21]

      Liu Z X, Yang Y Q, Liang S Q, Lu B G, Zhou J. pH-Buffer Contained Electrolyte for Self-Adjusted Cathode-Free Zn-MnO2 Batteries with Coexistence of Dual Mechanisms[J]. Small Struct., 2021,2(11)2100119. doi: 10.1002/sstr.202100119

    22. [22]

      Pan H L, Shao Y Y, Yan P F, Cheng Y W, Han K S, Nie Z M, Wang C M, Yan J H, Li X L, Bhattacharya P, Mueller K T, Liu J. Reversible Aqueous Zinc/Manganese Oxide Energy Storage from Conversion Reactions[J]. Nat. Energy, 2016,116039. doi: 10.1038/nenergy.2016.39

    23. [23]

      Huang J H, Wang Z, Hou M Y, Dong X L, Liu Y, Wang Y G, Xia Y Y. Polyaniline-Intercalated Manganese Dioxide Nanolayers as a High-Performance Cathode Material for an Aqueous Zinc-Ion Battery[J]. Nat. Commun., 2018,92906. doi: 10.1038/s41467-018-04949-4

    24. [24]

      Jiang L W, Liu L L, Yue J M, Zhang Q Q, Zhou A X, Borodin O, Suo L M, Li H, Chen L Q, Xu K, Hu Y S. High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte[J]. Adv. Energy Mater., 2019,321904427.

    25. [25]

      Zhang M, Li Y T, Shen Z G. "Water-in -Salt"Electrolyte Enhanced High Voltage Aqueous Supercapacitor with All - Pseudocapacitive Metal-Oxide Electrodes[J]. J. Power. Sources, 2019,414:479-485. doi: 10.1016/j.jpowsour.2019.01.037

    26. [26]

      Hemanth N R, Kandasubramanian B. Recent Advances in 2D MXenes for Enhanced Cation Intercalation in Energy Harvesting Applications: A Review[J]. Chem. Eng. J., 2020,392123678. doi: 10.1016/j.cej.2019.123678

    27. [27]

      Wu S M, Wang H, Li L, Guo M X, Qi Z C, Zhang Q Y, Zhou Y M. Intercalated MXene - Based Layered Composites: Preparation and Application[J]. Chin. Chem. Lett., 2020,31:961-968. doi: 10.1016/j.cclet.2020.02.046

    28. [28]

      KANG L P, ZHANG G N, BAI Y L, WANG H J, LEI Z B, LIU Z H. Two - Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application[J]. Acta Phys. - Chim. Sin., 2020,361905032. doi: 10.3866/PKU.WHXB201905032

    29. [29]

      Rakhi R B, Ahmed B, Anjum D, Alshareef H N. Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition Metal Carbide Surfaces for Supercapacitor Applications[J]. ACS Appl. Mater. Interfaces, 2016,8:18806-18814. doi: 10.1021/acsami.6b04481

    30. [30]

      Fang Y F, Liu Z C, Han J R, Jin Z Y, Han Y Q, Wang F X, Niu Y S, Wu Y P, Xu Y H. High-Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen - Vacancy - Rich TiO2 In Situ Grown on Ti3C2Tx Mxene[J]. Adv. Energy Mater., 2019,91803406. doi: 10.1002/aenm.201803406

    31. [31]

      Kong W H, Gong F, Zhou Q, Yu G S, Ji L, Sun X P, Asiri A M, Wang T, Luo Y L, Xu Y H. An MnO2 - Ti3C2Tx MXene Nanohybrid: An Efficient and Durable Electrocatalyst toward Artificial N2 Fixation to NH3 under Ambient Conditions[J]. J. Mater. Chem. A, 2019,7:18823-18827. doi: 10.1039/C9TA04902A

    32. [32]

      Zhang H, Qi Q, Zhang P G, Zheng W, Chen J, Zhou A G, Tian W B, Zhang W, Sun Z M. Self-Assembled 3D MnO2 Nanosheets@Delaminated-Ti3C2 Aerogel as Sulfur Host for Lithium-Sulfur Battery Cathodes[J]. ACS Appl. Energy Mater., 2019,2:705-714. doi: 10.1021/acsaem.8b01765

    33. [33]

      Zhao Q, Huang X J, Zhou M M, Ju Z N, Sun X D, Sun Y, Huang Z H, Li H, Ma T Y. Proton Insertion Promoted a Polyfurfural/MnO2 Nanocomposite Cathode for a Rechargeable Aqueous Zn-MnO2 Battery[J]. ACS Appl. Mater. Interfaces, 2020,12:36072-36081. doi: 10.1021/acsami.0c08579

    34. [34]

      Xiu L Y, Pei W, Zhou S, Wang Z Y, Yang P J, Zhao J J, Qiu J S. Multilevel Hollow MXene Tailored Low - Pt Catalyst for Efficient Hydrogen Evolution in Full - pH Range and Seawater[J]. Adv. Funct. Mater., 2020,301910028. doi: 10.1002/adfm.201910028

    35. [35]

      Xiu L Y, Wang Z Y, Yu M Z, Wu X H, Qiu J S. Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. ACS Nano, 2018,12:8017-8028. doi: 10.1021/acsnano.8b02849

    36. [36]

      Wu S H, Zhang J Z, Sun C, Chen J S. Synthesis of MnO2 /NiCo - Layered Double Hydroxide Hybrid as Electrode Materials for Supercapacitor[J]. J. Inorg. Organomet. Polym., 2020,30:3179-3187. doi: 10.1007/s10904-020-01481-1

    37. [37]

      Zhang N, Cheng F Y, Liu J, Wang L B, Long X H, Liu X S, Li F J, Chen J. Rechargeable Aqueous Zinc - Manganese Dioxide Batteries with Energy and Power Densities[J]. Nat. Commun., 2017,8405. doi: 10.1038/s41467-017-00467-x

    38. [38]

      Shi M J, Wang B, Chen C, Lang J W, Yan C, Yan X B. 3D High- Density MXene@MnO2 Microflowers for Advanced Aqueous Zinc-Ion Batteries[J]. J. Mater. Chem. A, 2020,8:24635-24644. doi: 10.1039/D0TA09085A

    39. [39]

      Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and Issues in Developing Salt Concentrated Battery Electrolytes[J]. Nat. Energy, 2019,4427. doi: 10.1038/s41560-019-0375-5

    40. [40]

      Wang Y G, Luo J Y, Wu W, Wang C X, Xia Y Y. Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium - Ion Intercalated Compounds-Ⅲ. Capacity Fading Mechanism of LiCo1/3Ni1/3Mn1/3O2 at Different pH Electrolyte Solutions[J]. J. Electrochem. Soc., 2007,154A228. doi: 10.1149/1.2432056

    41. [41]

      Sun W, Wang F, Hou S Y, Yang C Y, Fan X L, Ma Z H, Gao T, Han F D, Hu R Z, Zhu M, Wang C S. Zn/MnO2 Battery Chemistry with H+ and Zn2+ Coinsertion[J]. J. Am. Chem. Soc., 2017,139:9775-9778. doi: 10.1021/jacs.7b04471

    42. [42]

      LI H, LIU S Y, YUAN T C, WANG B, SHEN P, XU L, ZHAO G Y, BAI H T, CHEN X, CHEN Z X, CAO Y L. Electrochemical Mechanism of Na0.44MnO2 in Alkaline Aqueous Solution[J]. Acta Phys.-Chim. Sin., 2020,361905027. doi: 10.3866/PKU.WHXB201905027

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(7)
  • Abstract views(882)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return