Citation: Yin-Chuan WANG, Gui-Yong XIAO, Wei-Li XU, Mei-Li QI, Wen-Xi YAN, Yan-Qiu WU, Yu-Peng LÜ. Effect of Initial Calcium-Phosphorus Molar Ratio on Microstructure of Ultralong Hydroxyapatite Nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 620-628. doi: 10.11862/CJIC.2022.074 shu

Effect of Initial Calcium-Phosphorus Molar Ratio on Microstructure of Ultralong Hydroxyapatite Nanofibers

Figures(4)

  • The nucleation and crystal growth of hydroxyapatite (HA) crystals are closely related to surfactants and the initial calcium - phosphorus molar ratio (nCa, 0/nP, 0). In this work, HA nanofibers with high flexibility and aspect ratio have been synthesized by using oleic acid as the surfactant. The effect of nCa, 0/nP, 0 on the microstructures of the as - prepared products was investigated by X - ray diffraction (XRD), FTIR, field emission scanning electron microscope (FESEM), and energy-dispersive X-ray spectra (EDS). The formation mechanisms of HA nanofibers were proposed to better explain the effect of oleic and nCa, 0/nP, 0 based on the microstructure evolution. Ultralong HA nanofibers with high crystallinity and flexibility were synthesized with nCa, 0/nP, 0=0.8 -1.2, but too high and too low nCa, 0/nP, 0 will weaken the effect of oleic acid in inducing the preferential growth of HA along the c axis, which lead to the formation of amorphous knotted or low crystalline nanoneedle bundle-like products, respectively. The preferred growth direction of HA changes from a-axis to c-axis with the decrease of nCa, 0/nP, 0, but too low nCa, 0/nP, 0 causes HA to tend to grow along the a-axis and c-axis at the same time.
  • 加载中
    1. [1]

      Lin K L, Wu C T, Chang J. Advances in Synthesis of Calcium Phosphate Crystals with Controlled Size and Shape[J]. Acta Biomater., 2014,10(10):4071-4102. doi: 10.1016/j.actbio.2014.06.017

    2. [2]

      Arcís R W, López - Macipe A, Toledano M, Osorio E, Rodríguez - Clemente R, Murtra J, Fanovich M A, Pascual C D. Mechanical Properties of Visible Light - Cured Resins Reinforced with Hydroxyapatite for Dental Restoration[J]. Dent. Mater., 2002,18(1):49-57. doi: 10.1016/S0109-5641(01)00019-7

    3. [3]

      Zhang H Q, Darvell B W. Morphology and Structural Characteristics of Hydroxyapatite Whiskers: Effect of the Initial Ca Concentration, Ca/ P Ratio and pH[J]. Acta Biomater., 2011,7(7):2960-2968. doi: 10.1016/j.actbio.2011.03.020

    4. [4]

      Paknahad A, Goudarzi M, Kucko N W, Leeuwenburgh S C, Sluys L J. Calcium Phosphate Cement Reinforced with Poly(vinyl alcohol) Fibers: An Experimental and Numerical Failure Analysis[J]. Acta Biomater., 2021,119:458-471. doi: 10.1016/j.actbio.2020.10.014

    5. [5]

      Dorner - Reisel A, Berrothb K, Neubauerb R, Nestlerc K, Marxc G, Scislod M, Müllera E, Slosarcykd A. Unreinforced and Carbon Fibre Reinforced Hydroxyapatite: Resistance Against Microabrasion[J]. J. Eur. Ceram. Soc., 2004,24(7):2131-2139. doi: 10.1016/S0955-2219(03)00373-X

    6. [6]

      Yamamoto A, Honma R, Sumita M, Hanawa T. Cytotoxicity Evaluation of Ceramic Particles of Different Sizes and Shapes[J]. J. Biomed. Mater. Res. Part A, 2004,68A(2):244-256. doi: 10.1002/jbm.a.20020

    7. [7]

      Qi M L, Huang Z N, Yao W T, Long F, Cheng M, Song B A, Banner D, Shahbazian-Yassar R, Lu Y P, Shokuhfar T. In Situ Visualization of the Superior Nanomechanical Flexibility of Individual Hydroxyapatite Nanobelts[J]. CrystEngComm, 2018,20(8):1031-1036. doi: 10.1039/C7CE01852E

    8. [8]

      Qi M L, Hi K, Huang Z N, Shahbazian-Yassar R, Xiao G Y, Lu Y P, Shokuhfar T. Hydroxyapatite Fibers: A Review of Synthesis Methods[J]. JOM, 2017,69(8):1354-1360. doi: 10.1007/s11837-017-2427-2

    9. [9]

      Costa D O, Dixon S J, Rizkalla A S. One - and Three - Dimensional Growth of Hydroxyapatite Nanowires during Sol - Gel - Hydrothermal Synthesis[J]. ACS Appl. Mater. Interfaces, 2012,4(3):1490-1499. doi: 10.1021/am201735k

    10. [10]

      Zhuang Z, Fujimi T J, Nakamura M, Yoshimurad H, Aizawa M. Development of a, b - Plane - Oriented Hydroxyapatite Ceramics as Models for Living Bones and Their Cell Adhesion Behavior[J]. Acta Biomater., 2013,9(5):6732-6740. doi: 10.1016/j.actbio.2013.02.001

    11. [11]

       

    12. [12]

      Zhang H Q, Darvell B W. Synthesis and Characterization of Hydroxyapatite Whiskers by Hydrothermal Homogeneous Precipitation Using Acetamide[J]. Acta Biomater., 2010,6(8):3216-3222. doi: 10.1016/j.actbio.2010.02.011

    13. [13]

      Yang H, Liang T X, Qi X P, Jiang H H, Deng Y Q, Wang P, Gao H C. Solvothermal Synthesis of Hydroxyapatite Nanorods with Assistance of Green Polymer[J]. Mater. Sci. Eng. C, 2017,79:9-14. doi: 10.1016/j.msec.2017.05.007

    14. [14]

      Qi C, Musetti S, Fu L H, Zhu Y J, Huang L. Biomolecule - Assisted Green Synthesis of Nanostructured Calcium Phosphates and Their Biomedical Applications[J]. Chem. Soc. Rev., 2019,48(10):2698-2737. doi: 10.1039/C8CS00489G

    15. [15]

      Mann S, Archibald D D, Didymus J M, Douglas T, Heywood B R, Meldrum F C, Reeves N J. Crystallization at Inorganic-Organic Interfaces: Biominerals and Biomimetic Synthesis[J]. Science, 1993,261(5126):1286-1292. doi: 10.1126/science.261.5126.1286

    16. [16]

      Wang X, Zhuang J, Peng Q, Li Y D. Liquid-Solid-Solution Synthesis of Biomedical Hydroxyapatite Nanorods[J]. Adv. Mater., 2006,18(15):2031-2034. doi: 10.1002/adma.200600033

    17. [17]

      Wang Y C, Wang Z C, Xiao G Y, Xu W L, Wang K, Jiao Y, Qi M L, Lu Y P. Investigation on [OH-]-Responsive Systems for Construction of One-Dimensional Hydroxyapatite via a Solvothermal Method[J]. New J. Chem., 2021,45(1):358-364. doi: 10.1039/D0NJ04476H

    18. [18]

      Tao W, Wang J, Parak W J, Farokhzad O C, Shi J J. Nanobuffering of pH - Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications[J]. ACS Nano, 2019,13(5):4876-4882. doi: 10.1021/acsnano.9b01696

    19. [19]

      Holzwarth U, Gibson N. The Scherrer Equation Versus the'Debye - Scherrer Equation'[J]. Nat. Nanotechnol., 2011,6:534-534. doi: 10.1038/nnano.2011.145

    20. [20]

      Ma B, Zhuang S, Liu F, Duan J Z, Wang S C, Han J, Sang Y H, Yu X Q, Li D, Tang W, Ge S H, Liu H. One - Dimensional Hydroxyapatite Nanostructures with Tunable Length for Efficient Stem Cell Differentiation Regulation[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33717-33727. doi: 10.1021/acsami.7b13313

    21. [21]

      Landi E, Tampieri A, Celotti G, Sprio S. Densification Behaviour and Mechanisms of Synthetic Hydroxyapatites[J]. J. Eur. Ceram. Soc., 2000,20(14):2377-2387.

    22. [22]

      Chen H, Leng S. Rapid Synthesis of Hollow Nano-Structured Hydroxyapatite Microspheres via Microwave Transformation Method Using Hollow CaCO3 Precursor Microspheres[J]. Ceram. Int., 2015,41(2):2209-2213. doi: 10.1016/j.ceramint.2014.10.021

    23. [23]

      Acheson J G, Robinson L, McKillop S, Wilson S, McIvor M J, Meenan B J, Boyd A R. TOFSIMS and XPS Characterisation of Strontium in Amorphous Calcium Phosphate Sputter Deposited Coatings[J]. Mater. Charact., 2021,171110739. doi: 10.1016/j.matchar.2020.110739

    24. [24]

      Sindu P A, Kolanthai E, Suganthi R V, Arul T K, Manikandand E, Catalani L H, Kalkura S N. Green Synthesis of Si - Incorporated Hydroxyapatite Using Sodium Metasilicate as Silicon Precursor and In Vitro Antibiotic Release Studies[J]. J. Photochem. Photobiol. B, 2017,175:163-172. doi: 10.1016/j.jphotobiol.2017.08.030

    25. [25]

      Xu Z, Hu G. Simple and Green Synthesis of Monodisperse Silver Nanoparticles and Surface - Enhanced Raman Scattering Activity[J]. RSC Adv., 2012,2(30):11404-11409. doi: 10.1039/c2ra21745g

    26. [26]

      Yuan Y, Liu C, Zhang Y, Shan X Q. Sol-Gel Auto-Combustion Synthesis of Hydroxyapatite Nanotubes Array in Porous Alumina Template[J]. Mater. Chem. Phys., 2008,112(1):275-280. doi: 10.1016/j.matchemphys.2008.05.068

    27. [27]

      Ruikang T, George H N. New Mechanism For the Dissolution of Sparingly Soluble Minerals[J]. Pure Appl. Chem., 2002,74(10):1851-1857. doi: 10.1351/pac200274101851

    28. [28]

      Chen F, Zhu Y J. Large - Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire - Resistant Flexible Ordered Architectures[J]. ACS Nano, 2016,10(12):11483-11495. doi: 10.1021/acsnano.6b07239

    29. [29]

      He K, Sawczyk M, Liu C, Yuan Y F, Song B A, Deivanayagam R, Nie A, Hu X B, Dravid V P, Lu J, Sukotjo C, Lu Y P, Král P, Shokuhfar T, Shahbazian-Yassar R. Revealing Nanoscale Mineralization Pathways of Hydroxyapatite Using In Situ Liquid Cell Transmission Electron Microscopy[J]. Sci. Adv., 2020,6(47)eaaz7524. doi: 10.1126/sciadv.aaz7524

    30. [30]

      Harding I S, Rashid N, Hing K A. Surface Charge and the Effect of Excess Calcium Ions on the Hydroxyapatite Surface[J]. Biomaterials, 2005,26(34):6818-6826. doi: 10.1016/j.biomaterials.2005.04.060

    31. [31]

      Wang W T, Xue Z Y, Wang R H, Wang X, Xu D G. Molecular Dynamics Exploration of the Growth Mechanism of Hydroxyapatite Nanoparticles Regulated by Glutamic Acid[J]. J. Phys. Chem. B, 2021,125(19):5078-5088. doi: 10.1021/acs.jpcb.1c02447

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(16)
  • Abstract views(696)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return