Citation: Wen-Long ZHANG, Ying-Yuan HU, Ying-Li WANG, Rui LI, Jian-Li LI, Bin-Sheng YANG. Interaction of Melittin and Calf Thymus DNA[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 629-636. doi: 10.11862/CJIC.2022.073 shu

Interaction of Melittin and Calf Thymus DNA

  • Corresponding author: Bin-Sheng YANG, yangbs@sxu.edu.cn
  • Received Date: 1 November 2021
    Revised Date: 20 December 2021

Figures(9)

  • The binding of melittin (Mel) to Calf Thymus DNA (CT-DNA) and conformation change were described by circular dichroism (CD) spectra, UV-Vis spectra, fluorescence spectra, and isothermal titration calorimetry (ITC) in 10 mmol·L-1 HEPES buffer (pH=7.4). The results showed that Mel could form a complex with CT-DNA. The for- mation of the complex changed the conformation of Mel from random coil to α-helix as shown by CD spectra. The red edge excitation shift (REES) studies of tryptophan (Trp) residue in Mel indicated that Trp residue is located in the more hydrophobic environment in the complex with DNA, exactly as demonstrated by fluorescence lifetime and acrylamide experiments. Additionally, the double helix structure of CT-DNA changed and the CT-DNA melting tem- perature (Tm) increased from 64.3 to 66.2 ℃ once a complex was formed with Mel. Finally, the ITC experiment dem- onstrated that the binding of Mel to CT-DNA is an endothermic process. The interaction between Mel and CT-DNA was further characterized by an equilibrium association constant (Ka) of about 105 L·mol-1. The enthalpy contribu- tion to the free energy of binding was little, and nearly three times less than the entropic term TΔS calculated from measured values of Ka and ΔH. Thus, the binding of CT -DNA to Mel is primarily driven by entropy, demonstrating electrostatic and hydrophobic interactions playing roles in the formation of the complex. The ionic strength effect and single - stranded DNA (ssDNA) quenching effect further verified that electrostatic interaction and hydrophobic interactions coexist between them and electrostatic interaction is the predominant one.
  • 加载中
    1. [1]

      Habermann E. Bee and Wasp Venoms[J]. Science, 1972,177(4046):314-322. doi: 10.1126/science.177.4046.314

    2. [2]

      Terwilliger T C, Eisenberg D. The Structure of Melittin. Ⅰ. Structure Determination and Partial Refinement[J]. J. Biol. Chem., 1982,257(11):6010-6015. doi: 10.1016/S0021-9258(20)65097-9

    3. [3]

      Miura Y. NMR Chemical Shift Analysis of the Conformational Transition between the Monomer and Tetramer of Melittin in an Aqueous Solution[J]. Eur. Biophys. J., 2016,45(4):347-354. doi: 10.1007/s00249-015-1102-1

    4. [4]

      Therrien A, Fournier A, Lafleur M. Role of the Cationic C - Terminal Segment of Melittin on Membrane Fragmentation[J]. J. Phys. Chem. B, 2016,120(17):3993-4002. doi: 10.1021/acs.jpcb.5b11705

    5. [5]

      Moreno M, Giralt E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan[J]. Toxins, 2015,7(4):1126-1150. doi: 10.3390/toxins7041126

    6. [6]

      Follenius-Wund A, Mely Y, Gerard D. Spectroscopic Evidence of Two Melittin Molecules Bound to Ca2+-Calmodulin[J]. Biochem. Int., 1987,15(4):823-833.

    7. [7]

      Memariani H, Memariani M. Anti-fungal Properties and Mechanisms of Melittin[J]. Appl. Microbiol. Biotechnol., 2020,104:6513-6526. doi: 10.1007/s00253-020-10701-0

    8. [8]

      LI X Z, SUN X J, YAN H S, HE B L. Antimicrobial and Hemolytic Activities of Melittin and Its Analogues and Their Interactions with Phospholipid Membranes[J]. Chem. J. Chinese Universities, 2005,26(1):73-77. doi: 10.3321/j.issn:0251-0790.2005.01.013

    9. [9]

      He S D, Tan N, Sun C X, Liao K H, Zhu H J, Luo X G, Zhang J Y, Li D Y, Huang S G. Treatment with Melittin Induces Apoptosis and Autophagy of Fifibroblastlike Synoviocytes in Patients with Rheumatoid Arthritis[J]. Curr. Pharm. Biotechnol., 2020,21(8):734-740. doi: 10.2174/1389201021666191210110826

    10. [10]

      Gajski G, Garaj-Vrhovac V. Melittin: A Lytic Peptide with Anticancer Properties[J]. Environ. Toxicol. Pharmacol., 2013,36(2):697-705. doi: 10.1016/j.etap.2013.06.009

    11. [11]

      Ceremuga M, Stela M, Janik E, Gorniak L, Synowiec E, Sliwinski T, Sitarek P, Saluk-Bijak J, Bijak M. Melittin—A Natural Peptide from Bee Venom which Induces Apoptosis in Human Leukaemia Cells[J]. Biomolecules, 2020,10(2)247. doi: 10.3390/biom10020247

    12. [12]

      Memariani H, Memariani M, Moravvej H, Shahidi-Dadras M. Melittin: A Venom - derived Peptide with Promising Antiviral Properties[J]. Eur. J. Clin. Microbiol. Infect. Dis., 2020,39:5-17. doi: 10.1007/s10096-019-03674-0

    13. [13]

      Kim S J, Park J H, Kim K H, Lee W R, Kim K S, Park K K. Melittin Inhibits Atherosclerosis in LPS/High-Fat Treated Mice through Atheroprotective Actions[J]. J. Atheroscler. Thromb., 2011,18(12):1117-1126. doi: 10.5551/jat.8474

    14. [14]

      Paray B A, Ahmad A, Khan J M, Taufiq F, Pathan A, Malik A, Ahmed M Z. The Role of the Multifunctional Antimicrobial Peptide Melittin in Gene Delivery[J]. Drug Discov. Today, 2021,26(4):1053-1059. doi: 10.1016/j.drudis.2021.01.004

    15. [15]

      Wang T J, Zhang J, Xiao A J, Liu W Q, Shang Y, An J D. Melittin Ameliorates CVB3 - Induced Myocarditis via Activation of the HDAC2 - Mediated GSK - 3β/Nrf2/ARE Signaling Pathway[J]. Biochem. Biophys. Res. Commun., 2016,480(1):126-131. doi: 10.1016/j.bbrc.2016.09.135

    16. [16]

      Gajski G, Domijan A M, Žegura B, Štern A, Gerić M, Jovanović I N, Vrhovac I, Madunić J, Breljak D, Filipič M, Garaj-Vrhovac V. Melittin Induced Cytogenetic Damage, Oxidative Stress and Changes in Gene Expression in Human Peripheral Blood Lymphocytes[J]. Toxicon, 2016,110:56-67. doi: 10.1016/j.toxicon.2015.12.005

    17. [17]

      Zhao Y Q, Feng J Y, Liang A H, Yang B S. The Binding of Euplotes Octocarinatus Centrin with Target Peptide Melittin[J]. Chin. Sci. Bull., 2007,52(23):3216-3220. doi: 10.1007/s11434-007-0476-6

    18. [18]

      Zhang W L, Shi E X, Zhao Y Q, Yang B S. Modulation Effect of Double Strand DNA on the Self-Assembly of N-Terminal Domain of Euplotes Octocarinatus Centrin[J]. J. Inorg. Biochem., 2018,180:15-25. doi: 10.1016/j.jinorgbio.2017.12.001

    19. [19]

      Zhang W L, Shi E X, Feng Y N, Zhao Y Q, Yang B S. Endonucleaselike Activity of the N - Terminal Domain of Euplotes Octocarinatus Centrin[J]. RSC Adv., 2017,7(82):51773-51788. doi: 10.1039/C7RA07907A

    20. [20]

      Wilcox W, Eisenberg D. Thermodynamics of Melittin Tetramerization Determined by Circular Dichroism and Implications for Protein Folding[J]. Protein Sci., 1992,1(5):641-653. doi: 10.1002/pro.5560010510

    21. [21]

      Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular Dichroism and Conformational Polymorphism of DNA[J]. Nucleic Acids Res., 2009,37(6):1713-1725. doi: 10.1093/nar/gkp026

    22. [22]

      DONG Q, YE X W, YANG J, WANG W M, ZHAO Y Q, YANG B S. Inhibition of Functions for C-Terminal Domain of Euplotes Octocarinatus Centrin by Chlorpromazine Hydrochloride[J]. Chinese J. Inorg. Chem., 2021,37(1):23-32.  

    23. [23]

      Hall K, Lee T H, Aguilar M I. The Role of Electrostatic Interactions in the Membrane Binding of Melittin[J]. J. Mol. Recognit., 2011,24(1):108-118. doi: 10.1002/jmr.1032

    24. [24]

      Shi E X, Zhang W L, Zhao Y Q, Yang B S. Binding of Euplotes Octocarinatus Centrin to Peptide from Xeroderma Pigmentosum Group C Protein (XPC)[J]. RSC Adv., 2017,7(44):27139-27149. doi: 10.1039/C7RA03079G

    25. [25]

      Han L N, Zhou Y H, Huang X Q, Xiao M S, Zhou L, Zhou J H, Wang A H, Shen J. A Multi - spectroscopic Approach to Investigate the Interaction of Prodigiosin with CT - DNA[J]. Spectrochim. Acta Part A, 2014,123:497-502. doi: 10.1016/j.saa.2013.11.088

    26. [26]

      Kirby E P, Steiner R F. The Tryptophan Microenvironments in Apomyoglobin[J]. J. Biol. Chem., 1970,245(23):6300-6306. doi: 10.1016/S0021-9258(18)62609-2

    27. [27]

      Khatun U L, Mukhopadhyay C. Interaction of Bee Venom Toxin Melittin with Ganglioside GM1 Bicelle[J]. Biophys. Chem., 2013,180-181:66-75. doi: 10.1016/j.bpc.2013.06.012

    28. [28]

      Bhunia A, Domadia P N, Bhattacharjya S. Structural and Thermodynamic Analyses of the Interaction between Melittin and Lipopolysaccharide[J]. Biochim. Biophys. Acta - Biomembr., 2007,1768(12):3282-3291. doi: 10.1016/j.bbamem.2007.07.017

    29. [29]

      Demchenko A P. Red-Edge-Excitation Fluorescence Spectroscopy of Single-Tryptophan Proteins[J]. Eur. Biophys. J., 1988,16(2):121-129.

    30. [30]

      Chen W, Turro N J, Tomalia D A. Using Ethidium Bromide to Probe the Interactions between DNA and Dendrimers[J]. Langmuir, 2000,16(1):15-19. doi: 10.1021/la981429v

    31. [31]

      Solovyev A Y, Tarnovskaya S I, Chernova I A, Shataeva L K, Skorik Y A. The Interaction of Amino Acids, Peptides, and Proteins with DNA[J]. Int. J. Biol. Macromol., 2015,78:39-45. doi: 10.1016/j.ijbiomac.2015.03.054

    32. [32]

      Chai J, Wang J Y, Xu Q F, Hao F, Liu R T. Multispectroscopic Methods Combined with Molecular Modeling Dissect the Interaction Mechanisms of Ractopamine and Calf Thymus DNA[J]. Mol. Biosyst., 2012,8(7):1902-1907. doi: 10.1039/c2mb25095k

    33. [33]

      Tian L L, Zhang W, Yang B, Lu P, Zhang M, Lu D, Ma Y G, Shen J C. Zinc(Ⅱ)-Induced Color-Tunable Fluorescence Emission in the π-Conjugated Polymers Composed of the Bipyridine Unit: A Way to Get White - Light Emission[J]. J. Phys. Chem. B, 2005,109(15):6944-6947. doi: 10.1021/jp050375c

    34. [34]

      Goparaju G N, Satishchandran C, Gupta P K. The Effect of the Structure of Small Cationic Peptides on the Characteristics of Peptide - DNA Complexes[J]. Int. J. Pharm., 2009,369(1/2):162-169.

    35. [35]

      Wilkins M H. Physical Studies of the Molecular Structure of Deoxyribose Nucleic Acid and Nucleoprotein[J]. Cold Spring Harb Symp. Quant. Biol., 1956,21:75-90. doi: 10.1101/SQB.1956.021.01.007

    36. [36]

      Malinin V V, Khavinson V K. Interaction between Small Peptides and DNA Double Helix[J]. Basel: Karger, 2005:64-87.

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    3. [3]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    4. [4]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    5. [5]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    6. [6]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    7. [7]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    8. [8]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    9. [9]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(5)
  • Abstract views(516)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return