Citation: Hu WANG, Qing-Li LOU, Chun-Zhi HAO, Wen-Xiang ZHU, Yan YANG, Wei ZHANG, Dan MOU, Xia ZHANG, Chao-Chuang YIN. N4O2-Donor Macrocyclic Schiff Base Ni(Ⅱ) Complex: Synthesis, Crystal Structure, DFT Study and Urease Inhibition Study[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 765-773. doi: 10.11862/CJIC.2022.072 shu

N4O2-Donor Macrocyclic Schiff Base Ni(Ⅱ) Complex: Synthesis, Crystal Structure, DFT Study and Urease Inhibition Study

Figures(8)

  • A Ni(Ⅱ) complex, [Ni(C40H44N4O8)]Cl2·4CH3OH, with a 28-membered macrocyclic Schiff base ligand of an N4O2 donor set has been prepared by the [2+2] reaction of 1, 2-bis(2-methoxy -6-formylphenoxy)ethane with ethylenediamine in a 1∶1 stoichiometric ratio in the presence of Ni(Ⅱ) ion employing the template strategy. The complex was characterized by elemental analysis, infrared spectroscopy, powder X -ray diffraction, single-crystal X - ray diffraction, and density functional theory quantification calculations. The structural analysis demonstrates that Ni(Ⅱ) ion is six -coordinate by four N atoms from C=N groups, two O atoms from ether groups, forming a distorted octahedral geometry. Urease inhibitory activity and molecular docking simulation studies show that the Ni(Ⅱ) complex proved to be a good candidate for the inhibition of jack bean urease.
  • 加载中
    1. [1]

      Radecka-Paryzek W, Patroniak V, Lisowski J. Metal Complexes of Polyaza and Polyoxaaza Schiff Base Macrocycles[J]. Coord. Chem. Rev., 2005,249(21/22):2156-2175.

    2. [2]

      Rezaeivala M, Keypour H. Schiff Base and Non-Schiff Base Macrocyclic Ligands and Complexes Incorporating the Pyridine Moiety[J]. Coord. Chem. Rev., 2014,280:203-253. doi: 10.1016/j.ccr.2014.06.007

    3. [3]

      Fenton D E, Vigato P A. Macrocyclic Schiff Base Complexes of Lanthanides and Actinides[J]. Chem. Soc. Rev., 1988,17:69-90. doi: 10.1039/cs9881700069

    4. [4]

      Matkovićčalogović D, Marković B, Balić T. Synthesis and Structural Characterisation of a N4O4-Donor Schiff Base Macrocycle[J]. Microporous Mesoporous Mater., 2014,103(22):8378-8383.

    5. [5]

      Lascaux A, Leener G D, Fusaro L, Topic F, Rissanen K, Luhmer M, Jabin I. Selective Recognition of Neutral Guests in an Aqueous Medium by a Biomimetic Calix[6]cryptamide Receptor[J]. Org. Biomol. Chem., 2016,14(2):738-746. doi: 10.1039/C5OB02067K

    6. [6]

      Shin C G, Saito H, Yonezawa Y. Useful Synthesis of the Main Central 2, 3, 6-Trisubstituted Pyridine Skeleton of Various Thiostrepton-Type Macrocyclic Antibiotics[J]. ChemInform, 2004,35(19):45-50.

    7. [7]

      Dzhardimalieva G I, Pomogailo A D, Volpert V A. Frontal Polymerization of Metal-Containing Monomers: A Topical Review[J]. J. Inorg. Organomet. Polym., 2002,12(1):1-21.

    8. [8]

      Al Hareri M, Ali Z R, Regier J, Gavey E L, Carlos L D, Ferreira R A S, Pilkington M. Dual-Property Supramolecular H-Bonded 15-Crown-5 Ln(Ⅲ) Chains: Joint Magneto-Luminescence and Ab Initio Studies[J]. Inorg. Chem., 2017,56:7344-7353. doi: 10.1021/acs.inorgchem.7b00089

    9. [9]

      Hayami S, Gu Z Z, Einaga Y, Kobayasi Y, Ishikawa Y, Yamada Y, Fujishima A, Sato O. A Novel Liesst Iron(Ⅱ) Complex Exhibiting a High Relaxation Temperature[J]. Inorg. Chem., 2001,40(13):3240-3242. doi: 10.1021/ic000708e

    10. [10]

      Dhers S, Feltham H L C, Rouzières M, Clérac R, Brooker S. Macrocyclic {3d-4f} SMMs as Building Blocks for 1D-Polymers: Selective Bridging of 4f Ions by Use of an O-Donor Ligand[J]. Dalton Trans., 2016,45(45):18089-18093. doi: 10.1039/C6DT03734H

    11. [11]

      Keypour H, Rezaei M T, Jamshidi M, Farida S H M, Karamian R. Synthesis, Cytotoxicity, and Antioxidant Activity by In Vitro and Molecular Docking Studies of an Asymmetrical Diamine Containing Piperazine Moiety and Related Zn(Ⅱ), Cd(Ⅱ) and Mn(Ⅱ) Macrocyclic Schiff Base Complexes[J]. Inorg. Chem. Commun., 2021,125108443. doi: 10.1016/j.inoche.2021.108443

    12. [12]

      Zhang K, Lu Z Y, Feng C C, Yang Z R, Nie P P, Chen T T, Zhang L F, Ma S, Shen Y J, Lin M L. Series of Highly Luminescent Macrocyclic Sm(Ⅲ) Complexes: Functional Group Modifications Together with Luminescence Performances in Solid-State, Solution, and Doped Poly (methylmethacrylate) Film[J]. ACS Omega, 2019,4(19):18334-18341. doi: 10.1021/acsomega.9b02576

    13. [13]

      Sangwan V, Singh D P. Macrocyclic Schiff Base Complexes as Potent Antimicrobial Agents: Synthesis, Characterization and Biological Studies[J]. Mater. Sci. Eng. C, 2019,105110119. doi: 10.1016/j.msec.2019.110119

    14. [14]

      Yogendra S, Hennersdorf F, Weigand J J. Nitrogen(Ⅲ)-Phosphorus-Chalcogen Macrocycles for the Synthesis of Polynuclear Silver(Ⅰ) Sandwich Complexes[J]. Inorg. Chem., 2017,56:8698-8704. doi: 10.1021/acs.inorgchem.7b00141

    15. [15]

      Popa R A, Silvestru A, Pop A. Silver Complexes of a New Multi-dentate Macrocyclic Ligand with N/S/Se Donor Atoms[J]. Polyhedron, 2016,110:197-202. doi: 10.1016/j.poly.2016.02.045

    16. [16]

      Radecka-Paryzek W, Patroniak V, Kubicki M. First Example of Template Synthesis of Pentaaza Macrocyclic Ytterbium(Ⅲ) Complex and Solvent-Controlled Supramolecular Self-Assembly of Its Dimeric μ-η2: η2 Peroxo-Bridged Derivative[J]. Inorg. Chem. Commun., 2004,7:455-458. doi: 10.1016/j.inoche.2003.12.035

    17. [17]

      Patroniak V, Kubicki M, Mondry A, Lisowski J, Radecka-Paryzek W. Pentaaza Macrocyclic Ytterbium(Ⅲ) Complex and Solvent Controlled Supramolecular Self-Assembly of Its Dimeric μ-η2η2 Peroxo-Bridged Derivatives[J]. Dalton. Trans., 2004,20:3295-3304.

    18. [18]

      Radecka-Paryzek W, Patroniak V, Kubicki M. The Template Synthesis and Characterization of Pentaaza Macrocyclic Complexes of Rare Earth Elements. The Crystal Structure of the 2, 14-Dimethyl-3, 6, 10, 13, 19-pentaazabicyclo[13.3.1]nonadeca-1(19), 2, 13, 15, 17-pentaene-dichlorolutetium(Ⅲ) Perchlorate[J]. Polyhedron, 2003,22(20):2773-2779. doi: 10.1016/S0277-5387(03)00398-X

    19. [19]

      Fleischer E B, Lavallee D. Phenylrhodium Tetraphenylporphine. A Novel Synthesis of a Rhodium-Carbon Sigma Bond[J]. J. Am. Chem. Soc., 1967,89(26):7132-7133. doi: 10.1021/ja01002a062

    20. [20]

      Fenton D. Tetraimine Schiff Base Macrocycles Derived from Heterocyclic Dicarbonyls[J]. Pure Appl. Chem., 1986,58(11):1437-1444. doi: 10.1351/pac198658111437

    21. [21]

      Gavey E L, Pilkington M. Coordination Complexes of 15-Membered Pentadentate Aza, Oxoaza and Thiaaza Schiff Base Macrocycles "Old Complexes Offer New Attractions"[J]. Coord. Chem. Rev., 2015,296:125-152. doi: 10.1016/j.ccr.2015.03.017

    22. [22]

      Tuncer H, Erk Ç. Synthesis and Fluorescence Spectroscopy of Bis (ortho-and para-carvonyl)phenyl Glycols[J]. Dyes Pigm., 2000,44(2):81-86. doi: 10.1016/S0143-7208(99)00075-3

    23. [23]

      Tanaka T, Kawase M, Tani S. Urease Inhibitory Activity of Simple α, β-Unsaturated Ketones[J]. Life Sci., 2003,73:2985-2990. doi: 10.1016/S0024-3205(03)00708-2

    24. [24]

      Zaborska W, Krajewska B, Olech Z. Heavy Metal Ions Inhibition of Jack Bean Urease: Potential for Rapid Contaminant Probing[J]. J. Enzyme Inhib. Med. Chem., 2004,19(1):65-69. doi: 10.1080/14756360310001650237

    25. [25]

      Van Slyke D D, Archibald R M. Manometric, Titrimetric, and Colorimetric Methods for Measurement of Urease Activity[J]. J. Biol. Chem., 1944,154(3):623-642. doi: 10.1016/S0021-9258(18)71897-8

    26. [26]

      Trott O, Olson A J J. Autodock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading[J]. Comput. Chem., 2010,31(2):455-461.

    27. [27]

      Zhang N, Fan Y H, Bi C F, Zuo J, Zhang P F, Zhang Z Y, Zhu Z. Synthesis, Crystal Structure, and DNA Interaction of Magnesium(Ⅱ) Complexes with Schiff Bases[J]. J. Coord. Chem., 2013,66(11):1933-1944. doi: 10.1080/00958972.2013.796039

    28. [28]

      Li X, Bi C F, Fan Y H, Zhang X, Meng X M, Cui L S. Synthesis, Crystal Structure and Anticancer Activity of a Novel Ternary Copper(Ⅱ) Complex with Schiff Base Derived from 2-Amino-4-fluorobenzoic Acid and Salicylaldehyde[J]. Inorg. Chem. Commun., 2014,50:35-41. doi: 10.1016/j.inoche.2014.10.014

    29. [29]

      Zhao H Y, Zhao J W, Yang B F, He H, Yang G Y. Novel Three-Dimensional Organic-Inorganic Heterometallic Hybrid Built by Sandwich-Type Tetra-Mn-Substituted Germanotungstates Through Mixed 3d and 4f Metal Linkers[J]. Cryst. Growth Des., 2013,13(12):5169-5174. doi: 10.1021/cg4014575

    30. [30]

      Fukui K, Yonezawa T, Shingu H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons[J]. J. Chem. Phys., 1952,20(10):722-725.

    31. [31]

      Choudhary N, Bee S, Gupta A, Tandon P. Comparative Vibrational Spectroscopic Studies, HOMO-LUMO and NBO Analysis of N-(Phenyl)-2, 2-dichloroacetamide, N-(2-Chlorophenyl)-2, 2-dichloroacet-amide and N-(4-Chlorophenyl)-2, 2-dichloroacetamide Based on Density Functional Theory[J]. Comput. Theor. Chem., 2013,1016:8-21. doi: 10.1016/j.comptc.2013.04.008

    32. [32]

      Kosar B, Albayrak C. Spectroscopic Investigations and Quantum Chemical Computational Study of (E)-4-Methoxy-2-[(p-tolylimino) methyl]phenol[J]. Spectrochim. Acta Part A, 2011,78(1):160-167. doi: 10.1016/j.saa.2010.09.016

    33. [33]

      Xia S W, Xu X, Sun Y L, Fan Y H, Bi C F, Zhang D M, Yang L R. Density Functional Theory Study on La Complex with Schiff-Base as Building Block[J]. Chin. J. Struct. Chem., 2006,25(2):197-203.

    34. [34]

      Parr R G, Szentpály L V, Liu S. Electrophilicity Index[J]. J. Am. Chem. Soc., 1999,121:1922-1924. doi: 10.1021/ja983494x

    35. [35]

      Murthy P K, Sheena Mary Y, Shyma Mary Y, Panicker C Y, Suneetha V, Armaković S, Armaković S J, Van Alsenoy C, Suchetan P A. Synthesis, Crystal Structure Analysis, Spectral Investigations, DFT Computations and Molecular Dynamics and Docking Study of 4-Benzyl-5-oxomorpholine-3-carbamide, a Potential Bioactive Agent[J]. J. Mol. Struct., 2017,1134:25-39. doi: 10.1016/j.molstruc.2016.12.037

    36. [36]

      Okulik N, Jubert A H. Theoretical Analysis of the Reactive Sites of Non-Steroidal Anti-Inflammatory Drugs[J]. Int. Electron. J. Mol. Des., 2005,4:17-30.

    37. [37]

      Wang H, Lan T X, Zhang X, Zhang D M, Bi C F, Fan Y H. Synthesis, Crystal Structures, DFT Studies, Molecular Docking and Urease Inhibition Studies of Three Ni(Ⅱ) Complexes with a Sexidentate N2O4-Donor Bis-Schiff Base Ligand[J]. J. Inorg. Biochem., 2016,165:18-24. doi: 10.1016/j.jinorgbio.2016.10.006

    38. [38]

      Wang H, Xu C G, Zhang X, Zhang D M, Jin F, Fan Y H. Urease Inhibition Studies of Six Ni(Ⅱ), Co(Ⅱ) and Cu(Ⅱ) Complexes with Two Sexidentate N2O4-Donor Bis-Schiff Base Ligands: An Experimental and DFT Computational Study[J]. J. Inorg. Biochem., 2020,204110959. doi: 10.1016/j.jinorgbio.2019.110959

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    18. [18]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

Metrics
  • PDF Downloads(6)
  • Abstract views(422)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return