Citation: Jun-Li LI, Yi-Hang WEN, Le-Jia WANG, Xing LI, Xun-Wen XIAO. Photocurrent Response Properties of 2, 6-Bis(3′-pyridyl)-tetrathiafulvalene Based Zn/Co Coordination Polymer[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 745-751. doi: 10.11862/CJIC.2022.071 shu

Photocurrent Response Properties of 2, 6-Bis(3′-pyridyl)-tetrathiafulvalene Based Zn/Co Coordination Polymer

  • Corresponding author: Yi-Hang WEN, wyh@zjnu.edu.cn
  • Received Date: 14 October 2021
    Revised Date: 22 December 2021

Figures(6)

  • This is the first time that coordination polymers (CPs) with the ligand 2, 6-bis(3′-pyridyl)-tetrathiafulva- lene(3′-py-TTF-3-py) has been reported. These two CPs are isostructural with formulated as [Zn(3′-py-TTF-3-py)2 (TPA)] n (1) and [Co(3′-py-TTF-3-py)2(TPA)]n (2), (H2TPA=terephthalic acid). The X -ray single- crystal diffraction shows that 1 and 2 are 2D coordination polymers. The photoelectric experiment results show that the S…S interac- tions and the center metal in the CPs have an important impact on their photocurrent responses.
  • 加载中
    1. [1]

      Sao Y, Chen Y G, Zhu D S, Liu Q. Synthesis, Characterization, and Crystal Structure of a Novel Binuclear Copper(Ⅱ) Complex[J]. J. Coord. Chem., 2006,59:537-544. doi: 10.1080/00958970500252172

    2. [2]

      WANG L B, WANG J J, YUE E L, TANG L, WANG X, HOU X Y, ZHANG Y Q. Synthesis, Structure, Magnetic and Photocatalytic Properties of Nickel(Ⅱ) Coordination Polymer Based on 1-(3, 5-Dicarboxybenzyl)-1H-pyrazole-3, 5-dicarboxylic Acid Ligand[J]. Chinese J. Inorg. Chem., 2021,37(4):744-750.  

    3. [3]

      LI Y, ZENG F R, ZHOU F, LI S J. Syntheses, Crystal Structures, Luminescence and Photocatalytic Activity of Cu(Ⅱ), Zn(Ⅱ) and Mn(Ⅱ) Coordination Polymers Based on Ether-Bridged Carboxylic Acids[J]. Chinese J.Inorg. Chem., 2020,36(11):2124-2134. doi: 10.11862/CJIC.2020.243 

    4. [4]

      Ji Z, Wang H Z, Canossa S, Wuttke S, Yaghi O M. Pore Chemistry of Metal-Organic Frameworks[J]. Adv. Funct. Mater., 2020,30(41)2000238. doi: 10.1002/adfm.202000238

    5. [5]

      YANG X Q, HE C Y, ZHANG Y H, MU X G, JIANG S. Synthesis, Crystal Structure and Properties of Mn(Ⅱ)/Co(Ⅱ) Coordination Polymers Based on 1, 4-Bis(imidazol-1-yl)benzene[J]. Chinese J. Inorg. Chem., 2021,37(8):1364-1374.  

    6. [6]

      CHEN J W, ZHUANG Y F, ZOU X Z, FENG A S, ZHANG Y L, LI Y. Synthesis, Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) Coordination Polymers Based on Ether-Bridged Tetracarboxylic Acid[J]. Chinese J. Inorg. Chem., 2021,37(10):1900-1910. doi: 10.11862/CJIC.2021.208 

    7. [7]

      Wang H Z, Shi Z L, Yang J J, Sun T, Rungtaweevoranit B, Lyu H, Zhang Y B, Yaghi O M. Docking of Cu(Ⅰ) and Ag(Ⅰ) in Metal-Organic Frameworks for Adsorption and Separation of Xenon[J]. Angew. Chem. Int. Ed., 2021,60:3417-3421. doi: 10.1002/anie.202015262

    8. [8]

      Ghorai P, Dey A, Brandão P, Benmansour S, García C J G, Pay P P, Saha A. Multifunctional Ni(Ⅱ)-Based Metamagnetic Coordination Polymers for Electronic Device Fabrication[J]. Inorg. Chem., 2020,59:8749-8761. doi: 10.1021/acs.inorgchem.0c00389

    9. [9]

      Bhat S A, Palakurthy N B, Kambhala N, Subramanian A, Rao D S S, Prasad S K, Yelamaggad C V. Gram-Scale Synthesis and Multifunctional Properties of a Two-Dimensional Layered Copper(Ⅱ) Coordination Polymer[J]. ACS Appl. Polym. Mater., 2020,2:1543-1552. doi: 10.1021/acsapm.9b01219

    10. [10]

      Si C, Ma P T, Han Q X, Jiao J C, Du W, Wu J P, Li M X, Niu J Y. A Polyoxometalate-Based Inorganic Porous Material with Both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer-Villiger Oxidation and Cr(Ⅵ) Reduction[J]. Inorg. Chem., 2021,60:682-691. doi: 10.1021/acs.inorgchem.0c02658

    11. [11]

      Liang Y W, Strohecker D, Lynch V M, Holliday B J, Jones R A. A Thiophene-Containing Conductive Metallopolymer Using an Fe(Ⅱ) Bis(terpyridine) Core for Electrochromic Materials[J]. ACS Appl. Mater. Interfaces, 2016,8:34568-34580. doi: 10.1021/acsami.6b11657

    12. [12]

      Chen S S, Zhang Z Y, Liao R B, Zhao Y, Wang C, Qiao R, Liu Z D. A Photoluminescent Cd(Ⅱ) Coordination Polymer with Potential Active Sites Exhibiting Multiresponsive Fluorescence Sensing for Trace Amounts of NACs and Fe3+ and Al3+ Ions[J]. Inorg. Chem., 2021,60:4945-4956. doi: 10.1021/acs.inorgchem.1c00022

    13. [13]

      Liu H W, Li H H, Cheng F Y, Shi W, Chen J, Cheng P. Enhancing the Lithium Storage Capacities of Coordination Compounds for Advanced Lithium-Ion Battery Anodes via a Coordination Chemistry Approach[J]. Inorg. Chem., 2018,57:10640-10648. doi: 10.1021/acs.inorgchem.8b01295

    14. [14]

      Zhu Q Y, Han Q H, Shao M Y, Gu J, Shi Z, Die J. Supramolecular and Redox Chemistry of Tetrathiafulvalene Monocarboxylic Acid with Hydrogen-Bonded Pyridine and Bipyridine Molecules[J]. J. Phys. Chem. B, 2012,116:4239-4247.

    15. [15]

      Jiang H, Yang X J, Cui Z D, Liu Y C, Li H X, Hu W P, Kloc C. Adjusting tetrathiafulvalene (TTF) Functionality through Molecular Design for Organic Field-Effect Transistors[J]. CrystEngComm, 2014,16:5968-5983. doi: 10.1039/c3ce41849a

    16. [16]

      Zhu Q Y, Liu Y, Lu W, Zhang Y, Bian G Q, Niu G Y, Dai J. Effects of Protonation and Metal Coordination on Intramolecular Charge Transfer of Tetrathiafulvalene Compound[J]. Inorg. Chem., 2007,46:10065-10070. doi: 10.1021/ic700672e

    17. [17]

      Weng Y G, Yin W Y, Jiang M, Hou J L, Shao J, Zhu Q Y, Die J. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2020,12:52615-52623. doi: 10.1021/acsami.0c14510

    18. [18]

      Yin Z N, Li Y H, Sun Y G, Chen T, Xu J, Zhu Q Y, Die J. 3D Copper Tetrathiafulvalene Redox-Active Network with 8-Fold Interpenetrating Diamond-like Topology[J]. Inorg. Chem., 2016,55:9154-9157. doi: 10.1021/acs.inorgchem.6b01632

    19. [19]

      Xiao N, Han L, Wen Y H, Wang L J, Xiao X W. Syntheses, Structures and Photocurrent Response Properties of Two Crystals Based on Tetrathiafulvalene Derivatives[J]. Chin. J. Struct. Chem., 2021,40:759-766.

    20. [20]

      Goeb S, Sallé M. Electron-Rich Coordination Receptors Based on Tetrathiafulvalene Derivatives: Controlling the Host-Guest Binding[J]. Acc. Chem. Res., 2021,54:1043-1055. doi: 10.1021/acs.accounts.0c00828

    21. [21]

      Wang H Y, Cui L, Xie J Z, Leong C F, D'Alessandro D M, Zuo J L. Functional Coordination Polymers Based on Redox-Active Tetrathiafulvalene and Its Derivatives[J]. Chem. Rev., 2017,345:342-361.

    22. [22]

      Su J, Yuan S, Wang H Y, Huang L, Ge J U, Joseph E, Qin J S, Cagi T, Zuo J L, Zhou H C. Redox-Switchable Breathing Behavior in Tetrathiafulvalene-Based Metal-Organic Frameworks[J]. Nat. Commun., 2017,82008. doi: 10.1038/s41467-017-02256-y

    23. [23]

      Pan W, Xiao X W, Wang Z Q, Shen L J, Fang J H, Gao H Q, Ling X. Bis(3-pyridyl)-Substituted TTF as a Donor-Acceptor System: Synthesis, Crystal Structures, and Properties[J]. Synth. Met., 2014,194:132-136. doi: 10.1016/j.synthmet.2014.04.021

    24. [24]

      Wenger S, Bouit P A, Chen Q, Teuscher J, Censo D D, Humphry-Baker R, Moser J E, Delgado J L, Martín N, Zakeeruddin S M, Grätzel M. Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended Tetrathiafulvalene-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2010,132:5164-5169. doi: 10.1021/ja909291h

    25. [25]

      Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T S, Islam A, Zhang K, Peng W Q, Chen W, Han L Y. Dopant-Free Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells[J]. Energy Environ. Sci., 2014,7:2963-2967. doi: 10.1039/C4EE01589D

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    8. [8]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    9. [9]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    10. [10]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    11. [11]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    12. [12]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    13. [13]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    16. [16]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    17. [17]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    18. [18]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    19. [19]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    20. [20]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

Metrics
  • PDF Downloads(6)
  • Abstract views(355)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return