Citation: Peng XU, Wei DAI, Sha-Sha WANG, Zhen-Guo WU, Nan-Nan CHEN, Yang WANG, Jian LIU. Ag Nanoparticle-Doped Activated Microporous Carbon Spheres: An Efficient Adsorption/Catalysis Bifunctional Material for the Removal of Congo Red[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 752-764. doi: 10.11862/CJIC.2022.064 shu

Ag Nanoparticle-Doped Activated Microporous Carbon Spheres: An Efficient Adsorption/Catalysis Bifunctional Material for the Removal of Congo Red

Figures(10)

  • Herein, we fabricated silver nanoparticle - doped activated microporous carbon spheres (Ag/AMCSs) through a combining method of spray drying, carbonization, and KOH activation by using chitosan as a precursor. Based on a series of characterization and performance studies, Ag/AMCSs are confirmed to be able to function as both an adsorbent and a catalyst for the reduction of Congo red (CR) in the presence of NaBH4 due to the high porosity and high dispersion of silver nanoparticles. Adsorption studies were performed by varying pH, contact time, and initial concentration, and it was found that the adsorption process could be well estimated by the pseudo-second-order kinetic plot and Langmuir models, and the maximum adsorption capacity of Ag/AMCSs was estimated as 445 mg·g-1. For the reduction of CR, the rate constant k was calculated up to 0.311 min-1, and the conversion efficiency of CR remained at 95% after 5 successive cycles.
  • 加载中
    1. [1]

      Liu J, Wang N, Zhang H L, Baeyens J. Adsorption of Congo Red Dye on FexCo3-xO 4 Nanoparticles[J]. J. Environ. Manage., 2019,238:473-483. doi: 10.1016/j.jenvman.2019.03.009

    2. [2]

      Mao Y L, Wang Q, Yu L B, Qian H, Deng S J, Xiao W M, Zhao D, Chen C. A 2-Fold Interpenetrated Nitrogen-Rich Metal-Organic Framework for Rapid and Selective Adsorption of Congo Red[J]. Inorg. Chem., 2020,59(12):8213-8219. doi: 10.1021/acs.inorgchem.0c00567

    3. [3]

      Chen L W, Zhu Y Y, Cui Y M, Dai R, Shan Z H, Chen H. Fabrication of Starch-Based High-Performance Adsorptive Hydrogels Using a Novel Effective Pretreatment and Adsorption for Cationic Methylene Blue Dye: Behavior and Mechanism[J]. Chem. Eng. J., 2021,405126953. doi: 10.1016/j.cej.2020.126953

    4. [4]

      Munagapati V S, Wen H Y, Wen J C, Gutha Y, Tian Z, Reddy G M, Garcia J R. Anionic Congo Red Dye Removal from Aqueous Medium Using Turkey Tail (Trametes Versicolor) Fungal Biomass: Adsorption Kinetics, Isotherms, Thermodynamics, Reusability, and Characterization[J]. J. Dispersion Sci. Technol., 2020,42(12):1785-1798.

    5. [5]

      Meng X, Duan C, Zhang Y L, Lu W L, Wang W L, Ni Y H. CorncobSupported Ag NPs@ ZIF-8 Nanohybrids as Multifunction Biosorbents for Wastewater Remediation: Robust Adsorption, Catalysis and Antibacterial Activity[J]. Compos. Sci. Technol., 2020,200108384. doi: 10.1016/j.compscitech.2020.108384

    6. [6]

      Abukhadra M R, Adlii A, Bakry B M. Green Fabrication of Bentonite/ Chitosan@Cobalt Oxide Composite (BE/CH@Co) of Enhanced Adsorption and Advanced Oxidation Removal of Congo Red Dye and Cr from Water[J]. Int. J. Biol. Macromol., 2019,126:402-413. doi: 10.1016/j.ijbiomac.2018.12.225

    7. [7]

      Alhujaily A, Yu H B, Zhang X Y, Ma F Y. Adsorptive Removal of Anionic Dyes from Aqueous Solutions Using Spent Mushroom Waste[J]. Appl. Water Sci., 2020,10(7)183. doi: 10.1007/s13201-020-01268-2

    8. [8]

      Zhou J, Cai W Y, Ding J, Wan H, Guan G F. 0D/1D Z-Scheme g-C3N4 Quantum Dot/WO3 Composite for Efficient Cr(Ⅵ) Photoreduction under Visible Light[J]. J. Environ. Chem. Eng., 2021,9(4)105292. doi: 10.1016/j.jece.2021.105292

    9. [9]

      Yuan D S, Huang W, Chen X R, Li Z, Ding J, Wang L, Wan H, Dai W L, Guan G F. Introduction of In-Plane Π-Conjugated Heterojunction via rGO Modulation: a Promising Approach to Enhance Photoexcited Charge Separation and Transfer of g-C3N4[J]. Appl. Surf. Sci., 2019,489:658-667. doi: 10.1016/j.apsusc.2019.05.303

    10. [10]

      Panhwar R, Sahito I A, Khatri A, Sun K C. Improved Photocatalytic Activity of Nonwoven Fabric Coated with Graphene by a Novel Elevated Temperature Padding Method[J]. Mater. Chem. Phys., 2021,262124294. doi: 10.1016/j.matchemphys.2021.124294

    11. [11]

      Guo D X, Xiao Y R, Li T, Zhou Q F, Shen L G, Li R J, Xu Y C, Lin H J. Fabrication of High-Performance Composite Nanofiltration Membranes for Dye Wastewater Treatment: Mussel-Inspired Layer-by-Layer Self-Assembly[J]. J. Colloid Interface Sci., 2020,560:273-283. doi: 10.1016/j.jcis.2019.10.078

    12. [12]

      Brillas E. A Review on the Photoelectro-Fenton Process as Efficient Electrochemical Advanced Oxidation for Wastewater Remediation. Treatment with UV Light, Sunlight, and Coupling with Conventional and other Photo-Assisted Advanced Technologies[J]. Chemosphere, 2020,250126198. doi: 10.1016/j.chemosphere.2020.126198

    13. [13]

      Zhao J Q, Lu Z X, He X, Zhang X F, Li Q Y, Xia T, Zhang W, Lu C H. Fabrication and Characterization of Highly Porous Fe(OH)3@ Cellulose Hybrid Fibers for Effective Removal of Congo Red from Contaminated Water[J]. ACS Sustainable Chem. Eng., 2017,5(9):7723-7732. doi: 10.1021/acssuschemeng.7b01175

    14. [14]

      An L, Si C L, Bae J H, Jeong H, Kim Y S. One-Step Silanization and Amination of Lignin and Its Adsorption of Congo Red and Cu(Ⅱ) Ions in Aqueous Solution[J]. Int. J. Biol. Macromol., 2020,159:222-230. doi: 10.1016/j.ijbiomac.2020.05.072

    15. [15]

      Shahnaz T, Fazil S M M, Padmanaban V C, Narayanasamy S. Surface Modification of Nanocellulose Using Polypyrrole for the Adsorptive Removal of Congo Red Dye and Chromium in Binary Mixture[J]. Int. J. Biol. Macromol., 2020,151:322-332. doi: 10.1016/j.ijbiomac.2020.02.181

    16. [16]

      Guang S K, Xie X J, Zheng J, Wang Y N, Guo Y F, Cheng C, Wu Y, Zheng X Y, Wang C C. Synthesis of Hierarchical ZnO/C Hollow Spheres Constructed by Octahedron for Water Treatment[J]. J. Mater. Sci., 2020,55(26):11938-11948. doi: 10.1007/s10853-020-04879-x

    17. [17]

      Kubra K T, Salman M S, Hasan M N. Enhanced Toxic Dye Removal from Wastewater Using Biodegradable Polymeric Natural Adsorbent[J]. J. Mol. Liq., 2021,328115468. doi: 10.1016/j.molliq.2021.115468

    18. [18]

      Kubra K T, Salman M S, Znad H, Hasan M N. Efficient Encapsulation of Toxic Dye from Wastewater Using Biodegradable Polymeric Adsorbent[J]. J. Mol. Liq., 2021,329115541. doi: 10.1016/j.molliq.2021.115541

    19. [19]

      Bin Y M, Islam M M, Chowdhury A N, Awual M R. Efficient Encapsulation of Toxic Dyes from Wastewater Using Several Biodegradable Natural Polymers and Their Composites[J]. J. Cleaner Prod., 2021,291125920. doi: 10.1016/j.jclepro.2021.125920

    20. [20]

      Hasan M, Shenashen M A, Hasan M N, Znad H, Salman M S, Awual R. Natural Biodegradable Polymeric Bioadsorbents for Efficient Cationic Dye Encapsulation from Wastewater[J]. J. Mol. Liq., 2021,323114587. doi: 10.1016/j.molliq.2020.114587

    21. [21]

      Awual M R, Yaita T, Kobayashi T, Shiwaku H, Suzuki S. Improving Cesium Removal to Clean-Up the Contaminated Water Using Modified Conjugate Material[J]. J. Environ. Chem. Eng., 2020,8(2)103684. doi: 10.1016/j.jece.2020.103684

    22. [22]

      Hasana M M, Hasan M N, Awual M R, Islam M M, Shenashen M A, Iqbal J. Biodegradable Natural Carbohydrate Polymeric Sustainable Adsorbents for Efficient Toxic Dye Removal from Wastewater[J]. J. Mol. Liq., 2020,319114356. doi: 10.1016/j.molliq.2020.114356

    23. [23]

      Kamel R M, Shahat A, Hegazy W H, Khodier E M, Awual M R. Efficient Toxic Nitrite Monitoring and Removal from Aqueous Media with Ligand Based Conjugate Materials[J]. J. Mol. Liq., 2019,285:20-26. doi: 10.1016/j.molliq.2019.04.060

    24. [24]

      Znad H, Abbas K, Hena S, Awual M R. Synthesis a Novel Multilamellar Mesoporous TiO2 /ZSM-5 for Photo-Catalytic Degradation of Methyl Orange Dye in Aqueous Media[J]. J. Environ. Chem. Eng., 2018,6(1):218-227. doi: 10.1016/j.jece.2017.11.077

    25. [25]

      Awual M R, Hasan M M. A Ligand Based Innovative Composite Material for Selective Lead(Ⅱ) Capturing from Wastewater[J]. J. Mol. Liq., 2019,294111679. doi: 10.1016/j.molliq.2019.111679

    26. [26]

      Awual M R, Hasan M M, Iqbal J, Islam A, Islam M A, Asiri A M, Rahman M M. Naked-Eye Lead(Ⅱ) Capturing from Contaminated Water Using Innovative Large-Pore Facial Composite Materials[J]. Microchem. J., 2020,154104584. doi: 10.1016/j.microc.2019.104584

    27. [27]

      Awual M R, Hasan M M, Islam A, Asiri A M, Rahman M M. Optimization of an Innovative Composited Material for Effective Monitoring and Removal of Cobalt(Ⅱ) from Wastewater[J]. J. Mol. Liq., 2020,298112035. doi: 10.1016/j.molliq.2019.112035

    28. [28]

      He T, Hua J Q, Chen R P, Yu L. Adsorption Characteristics of Methylene Blue by a Dye-Degrading and Extracellular Polymeric Substance-Producing Strain[J]. J. Environ. Manage., 2021,288112446. doi: 10.1016/j.jenvman.2021.112446

    29. [29]

      Slany M, Jankovic L, Madejova J. Structural Characterization of Organo-Montmorillonites Prepared from a Series of Primary Alkylamines Salts: Mid-IR and Near-IR Study[J]. Appl. Clay Sci., 2019,176:11-20. doi: 10.1016/j.clay.2019.04.016

    30. [30]

      Chishti A N, Guo F, Aftab A, Ma Z Y, Liu Y, Chen M, Gautam J, Chen C, Ni L B, Diao G W. Synthesis of Silver Doped Fe3 O4/C Nanoparticles and Its Catalytic Activities for the Degradation and Reduction of Methylene Blue and 4-Nitrophenol[J]. Appl. Surf. Sci., 2021,546149070. doi: 10.1016/j.apsusc.2021.149070

    31. [31]

      Zheng D Q, Zhang M, Ding L, Zhang Y W, Zheng J, Xu J L. Facile Synthesis of Magnetic Resorcinol-Formaldehyde (RF) Coated Carbon Nanotubes for Methylene Blue Removal[J]. RSC Adv., 2016,6(15):11973-11979. doi: 10.1039/C5RA25738G

    32. [32]

      Bhatia P, Nath M. Green Synthesis of P-NiO/N-ZnO Nanocomposites: Excellent Adsorbent for Removal of Congo Red and Efficient Catalyst for Reduction of 4-Nitrophenol Present in Wastewater[J]. J. Water Process Eng., 2020,33101017. doi: 10.1016/j.jwpe.2019.101017

    33. [33]

      Chai Y Y, Ding J, Wang L, Liu Q Q, Ren J, Dai W L. Enormous Enhancement in Photocatalytic Performance of Ag3PO4/HAp Composite: A Z-Scheme Mechanism Insight[J]. Appl. Catal. B, 2015,179:29-36. doi: 10.1016/j.apcatb.2015.05.006

    34. [34]

      Sun B F, Yuan Y N, Li H L, Li X Y, Zhang C H, Guo F, Liu X H, Wang K A, Zhao X S. Waste-Cellulose-Derived Porous Carbon Adsorbents for Methyl Orange Removal[J]. Chem. Eng. J., 2019,371:55-63. doi: 10.1016/j.cej.2019.04.031

    35. [35]

      Yang X Y, Lu P H, Yu L, Pan P P, Elzatahry A A, Alghamdi A, Luo W, Cheng X W, Deng Y H. An Efficient Emulsion-Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures[J]. Adv. Funct. Mater., 2020,30(36)2002488. doi: 10.1002/adfm.202002488

    36. [36]

      Shao Y M, Zhou L C, Bao C, Wu Q, Wu W L, Liu M Z. Facile Preparation of Tiny Gold Nanoparticle Loaded Magnetic Yolk-Shell Carbon Nanoreactors for Confined Catalytic Reactions[J]. New J. Chem., 2016,40(11):9684-9693. doi: 10.1039/C6NJ01388K

    37. [37]

      Wang H F, Li Z C, Yahyaoui S, Hanafy H, Seliem M K, Bonilla-Petriciolet A, Dotto G L, Sellaoui L, Li Q. Effective Adsorption of Dyes on an Activated Carbon Prepared from Carboxymethyl Cellulose: Experiments, Characterization and Advanced Modelling[J]. Chem. Eng. J., 2021,417128116. doi: 10.1016/j.cej.2020.128116

    38. [38]

      Cui Y, Qin L, Kang W W, Ma J H, Yang Y Z, Liu X G. Magnetic Carbon Nanospheres: Synthesis, Characterization, and Adsorbability towards Quinoline from Coking Wastewater[J]. Chem. Eng. J., 2020,382122995. doi: 10.1016/j.cej.2019.122995

    39. [39]

      Huang H Z, Yuan Q, Yang X R. Preparation and Characterization of Metal-Chitosan Nanocomposites[J]. Colloids Surf. B, 2004,39:31-37. doi: 10.1016/j.colsurfb.2004.08.014

    40. [40]

      Laghrib F, Ajermoun N, Bakasse M, Lahrich S, Mhammedi M A. Synthesis of Silver Nanoparticles Assisted by Chitosan and Its Application to Catalyze the Reduction of 4-Nitroaniline[J]. Int. J. Biol. Macromol., 2019,135:752-759. doi: 10.1016/j.ijbiomac.2019.05.209

    41. [41]

      Wei D W, Sun W Y, Qian W P, Ye Y Z, Ma X Y. The Synthesis of Chitosan-Based Silver Nanoparticles and Their Antibacterial Activity[J]. Carbohydr. Res., 2009,344(17):2375-2382. doi: 10.1016/j.carres.2009.09.001

    42. [42]

      An J, Ji Z X, Wang D S, Luo Q Z, Li X Y. Preparation and Characterization of Uniform-Sized Chitosan/Silver Microspheres with Antibacterial Activities[J]. Mater. Sci. Eng. C, 2016,36:33-41.

    43. [43]

      Okura N S, Sabi G J, Crivellenti M C, Gomes R A B, Fernandez-Lafuente R, Mendes A A. Improved Immobilization of Lipase from Thermomyces Lanuginosus on a New Chitosan-Based Heterofunctional Support: Mixed Ion Exchange Plus Hydrophobic Interactions[J]. Int. J. Biol. Macromol., 2020,163:550-561. doi: 10.1016/j.ijbiomac.2020.07.021

    44. [44]

      Yue W J, Wang Z Y, Wang Z, Xu Q F, Zheng C, Zha X Q, Gui H H, Zhang H. Synthesis of CdS with Chitosan for Photodegradation to Rhodamine B[J]. J. Nanopart. Res., 2021,23(1)2. doi: 10.1007/s11051-021-05143-2

    45. [45]

      Du X Y, He J, Zhu J, Sun L J, An S S. Ag-Deposited Silica-Coated Fe3O4 Magnetic Nanoparticles Catalyzed Reduction of p-Nitrophenol[J]. Appl. Surf. Sci., 2012,258(7):2717-2723. doi: 10.1016/j.apsusc.2011.10.122

    46. [46]

      Lu H, Ju H F, Yang Q, Li Z R, Ren H Y, Xin X, Xu G Y. Synthesis of Ag@SiO2 Hybrid Nanoparticles Templated by a Triton X-100)/ 1-Hexanol/Cyclohexane/H2O Water-in-Oil Microemulsion[J]. CrystEngComm, 2013,15(33):6511-6517. doi: 10.1039/c3ce40432c

    47. [47]

      Wang H, Li B B, Mei J F, Gao C X, Li Z Y, Xu S. Fabrication and Characterization of Novel Ag2 O-Polyimide Composites with Enhanced Visible-Light Photocatalytic Activity[J]. Fullerenes Nanotubes Carbon Nanostruct., 2019,27(5):410-416. doi: 10.1080/1536383X.2019.1578753

    48. [48]

      Zhang X M, Jing L Y, Wei L J, Zhang F W, Yang H. Semipermeable Organic-Inorganic Hybrid Microreactors for Highly Efficient and Size-Selective Asymmetric Catalysis[J]. ACS Catal., 2017,7(10):6711-6718. doi: 10.1021/acscatal.7b01659

    49. [49]

      Wang L, Zhang Y S, Jiang H R, Wang H. Carbonyl-Incorporated Aromatic Hyper-Cross-Linked Polymers with Microporous Structure and Their Functional Materials for CO2 Adsorption[J]. Ind. Eng. Chem. Res., 2020,59(36):15955-15966. doi: 10.1021/acs.iecr.0c02165

    50. [50]

      Bian Z Z, Feng Y L, Li H R, Yu H, Wu H. Adsorption-Photocatalytic Degradation and Kinetic of Sodium Isobutyl Xanthate Using the Nitrogen and Cerium Co-doping TiO2-Coated Activated Carbon[J]. Chemosphere, 2021,263128254. doi: 10.1016/j.chemosphere.2020.128254

    51. [51]

      Ahamad T, Naushad M, Al-Saeedi S I, Alshehri S M. N/S-Doped Carbon Embedded with Ag NPs as a Highly Efficient Catalyst for the Reduction of Toxic Organic Pollutants[J]. Mater. Lett., 2020,264127310. doi: 10.1016/j.matlet.2020.127310

    52. [52]

      Awual M R. A Novel Facial Composite Adsorbent for Enhanced Copper(Ⅱ) Detection and Removal from Wastewater[J]. Chem. Eng. J., 2015,266:368-375. doi: 10.1016/j.cej.2014.12.094

    53. [53]

      Awual M R, Hasan M M, Iqbal J, Islam M A, Islam A, Khandaker S, Asiri A M, Rahman M M. Ligand Based Sustainable Composite Material for Sensitive Nickel(Ⅱ) Capturing in Aqueous Media[J]. J. Environ. Chem. Eng., 2020,8(1)103591. doi: 10.1016/j.jece.2019.103591

    54. [54]

      Islam A, Ahmed T, Awual M R, Rahman A, Sultana M, Abd Aziz A, Monir M U, Teo S H, Hasan M. Advances in Sustainable Approaches to Recover Metals from e-Waste—A Review[J]. J. Cleaner Prod., 2020,244118815. doi: 10.1016/j.jclepro.2019.118815

    55. [55]

      Shahat A, Hassan H M A, El-Shahat M F, Shahawy O, Awual M R. Visual Nickel(Ⅱ) Ions Treatment in Petroleum Samples Using a Mesoporous Composite Adsorbent[J]. Chem. Eng. J., 2018,334:957-967. doi: 10.1016/j.cej.2017.10.105

    56. [56]

      Lei Y, Luo M Y. The Adsorption Mechanism of Anionic and Cationic Dyes by Jerusalem Artichoke Stalk-Based Mesoporous Activated Carbon[J]. J. Environ. Chem. Eng., 2014,2:220-229. doi: 10.1016/j.jece.2013.12.016

    57. [57]

      Xu P, Wu Z G, Dai W, Wang Y, Zheng M K, Su X D, Teng Z G. Hollow Mesoporous Organosilica Nanospheres with Multiple Tiny Silver Nanoparticles: A Polymer Mediated Growth Approach and Catalytic Application[J]. J. Taiwan Inst. Chem. Eng., 2020,117:287-293. doi: 10.1016/j.jtice.2020.12.015

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    3. [3]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    4. [4]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    5. [5]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    6. [6]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    7. [7]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    8. [8]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    9. [9]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    10. [10]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    11. [11]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    12. [12]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    13. [13]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    16. [16]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    17. [17]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    18. [18]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    19. [19]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    20. [20]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

Metrics
  • PDF Downloads(1)
  • Abstract views(509)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return