Citation: Xiao-Li CHEN, Lu LIU, Lu SHANG, Miao CAI, Hua-Li CUI, Hua YANG, Ji-Jiang WANG. A Highly Sensitive and Multi-responsive Zn-MOF Fluorescent Sensor for Detection of Fe3+, 2, 4, 6-Trinitrophenol, and Ornidazole[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 735-744. doi: 10.11862/CJIC.2022.063 shu

A Highly Sensitive and Multi-responsive Zn-MOF Fluorescent Sensor for Detection of Fe3+, 2, 4, 6-Trinitrophenol, and Ornidazole

  • Corresponding author: Xiao-Li CHEN, chenxiaoli003@163.com
  • Received Date: 17 September 2021
    Revised Date: 22 November 2021

Figures(8)

  • A Zinc metal-organic framework (Zn-MOF) based on H4bta (1, 2, 3, 5-benzene tetracarboxylic acid) and bpy (4, 4′- dipyridine) ligands, namely {[Zn2(bta) (bpy) (H2O)2]·H2O}n (1), have been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction analysis. MOF 1 shows a 3D network structure. The completely deprotonated (bta)4- ligand adopts a μ6 -η1 -η2 -η2 -η1 chelating and bridging coordination mode. Interestingly, 1 is a high sensitivity, good selectivity, and multi-response fluorescence sensor, which can be used for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole. In addition, the thermal stability of 1 was also studied.
  • 加载中
    1. [1]

      Zhang Y M, Yuan S, Day G, Wang X, Yang X Y, Zhou H C. Luminescent Sensors Based on Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2018,354:28-45. doi: 10.1016/j.ccr.2017.06.007

    2. [2]

      Yang X G, Ma L F, Yan D P. Facile Synthesis of 1D Organic-Inorganic Perovskite Micro-belts with High Water Stability for Sensing and Photonic Applications[J]. Chem. Sci., 2019,10:4567-4572. doi: 10.1039/C9SC00162J

    3. [3]

      Zhang X, Zhang Y, Shi P, Bi Z L, Shan Z X, Ren L J. The Deep Challenge of Nitrate Pollution in River Water of China[J]. Sci. Total Environ., 2021,770:144674-144678. doi: 10.1016/j.scitotenv.2020.144674

    4. [4]

      Chen Y Z, Wang Z U, Wang H W, Lu J L, Yu S H, Jiang H L. Singlet Oxygen-Engaged Selective Photo-Oxidation over Pt Nanocrystals/ Porphyrinic MOF: The Roles of Photothermal Effect and Pt Electronic State[J]. J. Am. Chem. Soc., 2017,139:2035-2039. doi: 10.1021/jacs.6b12074

    5. [5]

      Qiu S L, Xue M, Zhu G S. Metal-Organic Framework Membranes: From Synthesis to Separation Application[J]. Chem. Soc. Rev., 2014,43:6116-6140. doi: 10.1039/C4CS00159A

    6. [6]

      Han S D, Liu S J, Wang Q L, Miao X H, Hu T L. Synthesis and Magnetic Properties of a Series of Octanuclear[Fe6Ln2] Nanoclusters[J]. Cryst. Growth Des., 2015,15:2253-2259. doi: 10.1021/acs.cgd.5b00024

    7. [7]

      Ye Y, Du J F, Sun L B, Liu Y C, Wang S, Song X W, Liang Z Q. Two Zinc Metal-Organic Framework Isomers Based on Pyrazine Tetracarboxylic Acid and Dipyridinylbenzene for Adsorption and Separation of CO2 and Light Hydrocarbons[J]. Dalton Trans., 2020,49:1135-1142. doi: 10.1039/C9DT04305E

    8. [8]

      Liu L, Wang S M, Han Z B, Ding M, Yuan D Q, Jiang H L. Exceptionally Robust In-Based Metal-Organic Framework for Highly Efficient Carbon Dioxide Capture and Conversion[J]. Inorg. Chem., 2016,55:3558-3565. doi: 10.1021/acs.inorgchem.6b00050

    9. [9]

      Chai D F, Gómez-García C J, Li B, Pang H J, Ma H Y, Wang H M, Tan L C. Exceptionally Robust In-Based Metal-Organic Framework for Highly Efficient Carbon Dioxide Capture and Conversion[J]. Chem. Eng. J., 2019,373:587-597. doi: 10.1016/j.cej.2019.05.084

    10. [10]

      Wang G D, Li Y Z, Shi W J, Zhang B, Hou L, Wang Y Y. A Robust Cluster-Based Eu-MOF as Multi-functional Fluorescence Sensor for Detection of Antibiotics and Pesticides in Water[J]. Sens. Actuators B, 2021,331:129377-129384. doi: 10.1016/j.snb.2020.129377

    11. [11]

      Hou Y, Chai D F, Li B N, Pang H J, Ma H Y, Wang X M, Tan L C. Polyoxometalate-Incorporated Metallacalixarene@Graphene Composite Electrodes for High-Performance Supercapacitors[J]. ACS Appl. Mater. Interfaces, 2019,11:20845-20853. doi: 10.1021/acsami.9b04649

    12. [12]

      Zhao J, Wang Y N, Dong W W, Wu Y P, Li D S, Liu B, Zhang Q C. A New Surfactant-Introduction Strategy for Separating the Pure Single-Phase of Metal-Organic Frameworks[J]. Chem. Commun., 2015,51:9479-9482. doi: 10.1039/C5CC02043C

    13. [13]

      Li X Z, Li M, Li Z, Hou J Z, Huang X C, Li D. Concomitant and Controllable Chiral/Racemic Polymorphs: From Achirality to Isotactic, Syndiotactic, and Heterotactic Chirality[J]. Angew. Chem. Int. Ed., 2008,47:6371-6374. doi: 10.1002/anie.200801481

    14. [14]

      Cunha D, Yahia M B, Hall S, Miller S R, Chevreau H, Elkaim E, Maurin G, Horcajada P, Serre C. Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks[J]. Chem. Mater., 2013,25:2767-2776. doi: 10.1021/cm400798p

    15. [15]

      Li D S, Wu Y P, Zhao J, Lu J Y. Metal-Organic Frameworks Based upon Non-zeotype 4-Connected Topology[J]. Coord. Chem. Rev., 2014,261:1-27. doi: 10.1016/j.ccr.2013.11.004

    16. [16]

      Zhao B, Cheng P, Chen X Y, Cheng C, Shi W, Liao D J, Yan S P, Jiang Z H. Design and Synthesis of 3d-4f Metal-Based Zeolite-Type Materials with a 3D Nanotubular Structure Encapsulated"Water" Pipe[J]. J. Am. Chem. Soc., 2004,126:3012-3013. doi: 10.1021/ja038784e

    17. [17]

      Zeng M H, Feng X L, Chen X M. Crystal-to-Crystal Transformations of a Microporous Metal-Organic Laminated Framework Triggered by Guest Exchange, Dehydration and Readsorption[J]. J. Chem. Soc. Dalton Trans., 2004:2217-2223.

    18. [18]

      Patra R, Titi H M, Goldberg I. Coordination Polymers of Flexible Poly-carboxylic Acids with Metal Ions. Ⅳ. Syntheses, Structures, and Magnetic Properties of Polymeric Networks of 5-(3, 5)-(Dicarboxybenzyloxy)isophthalic Acid with Cd(Ⅱ), Cu(Ⅱ), Co(Ⅱ) and Mn(Ⅱ) Ions[J]. CrystEngComm, 2013,15:2853-2862. doi: 10.1039/c3ce27006h

    19. [19]

      Sun D, Han L L, Yuan S, Deng Y K, Xu M Z, Sun D F. Four New Cd(Ⅱ) Coordination Polymers with Mixed Multidentate N-Donors and Biphenyl-Based Polycarboxylate Ligands: Syntheses, Structures, and Photoluminescent Properties[J]. Cryst. Growth Des., 2013,13:377-385. doi: 10.1021/cg301573c

    20. [20]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    21. [21]

      Wang X T, Li R Y, Liu A G, Yue C P, Wang S M, Cheng J J, Li J P, Liu Z Y. Syntheses, Crystal Structures, Antibacterial Activities of Cu(Ⅱ) and Ni(Ⅱ) Complexes Based on Terpyridine Polycarboxylic Acid Ligand[J]. J. Mol. Struct., 2019,1184:503-511. doi: 10.1016/j.molstruc.2019.02.072

    22. [22]

      Dong X Y, Si C D, Fan Y, Hu D C, Yao X Q, Yang Y X, Liu J C. Effect of N-Donor Ligands and Metal Ions on the Coordination Polymers Based on a Semirigid Carboxylic Acid Ligand: Structures Analysis, Magnetic Properties, and Photoluminescence[J]. Cryst. Growth Des., 2016,16:2062-2073. doi: 10.1021/acs.cgd.5b01734

    23. [23]

      HUANG J X, ZHAO H, LIU S Q, ZHANG J J. Two-Dimensional Luminescent Coordination Polymer Based on Dinuclear {Zn2(COO)4} Second Bulidings Units: Crystal Structure and Detection of Fe3+[J]. Chinese J. Inorg. Chem., 2021,37(8):1513-1518.  

    24. [24]

      Xia J, Zhao B, Wang H S, Shi W, Ma Y, Song H B, Cheng P, Liao D Z, Yan S P. Two-and Three-Dimensional Lanthanide Complexes: Synthesis, Crystal Structures, and Properties[J]. Inorg. Chem., 2007,46:3450-3458. doi: 10.1021/ic061620p

    25. [25]

      Zhang L Y, Liu G F, Zheng S L, Ye B H, Zhang X M, Chen X M. Helical Ribbons of Cadmium(Ⅱ) and Zinc(Ⅱ) Dicarboxylates with Bipyridyl-Like Chelates-Syntheses, Crystal Structures and Photoluminescence[J]. Eur. J. Inorg. Chem., 2003:2965-2971.

    26. [26]

      Wang X L, Qin C, Wang E B, Xu L, Su Z M, Hu C W. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J]. Angew. Chem. Int. Ed., 2004,43:5036-5040. doi: 10.1002/anie.200460758

    27. [27]

      Xiao Q Q, Dong G Y, Li Y H, Cui G H. Cobalt(Ⅱ)-Based 3D Coordination Polymer with Unusual 4, 4, 4-Connected Topology as a Dual-Responsive Fluorescent Chemosensor for Acetylacetone and Cr2O72-[J]. Inorg. Chem., 2019,58:15696-15699. doi: 10.1021/acs.inorgchem.9b02534

    28. [28]

      Lv R, Li H, Su J, Fu X, Yang B Y, Gu W, Liu X. Zinc Metal-Organic Framework for Selective Detection and Differentiation of Fe(Ⅲ) and Cr(Ⅵ) Ions in Aqueous Solution[J]. Inorg. Chem., 2017,56:12348-12356. doi: 10.1021/acs.inorgchem.7b01822

    29. [29]

      Wen G X, Han M L, Wu X Q, Dong W W, Zhao J, Li D S, Ma L F. A Multi-responsive Luminescent Sensor Based on a Super-Stable Sandwich-Type Terbium(Ⅲ)-Organic Framework[J]. Dalton Trans., 2016,45:15492-15499. doi: 10.1039/C6DT03057B

    30. [30]

      Xiao J N, Liu J J, Liu M Y, Ji G F, Liu Z L. Fabrication of a Luminescence-Silent System Based on a Post-synthetic Modification Cd-MOFs: A Highly Selective and Sensitive Turn-On Luminescent Probe for Ascorbic Acid Detection[J]. Inorg. Chem., 2019,58:6167-6174. doi: 10.1021/acs.inorgchem.9b00420

    31. [31]

      Wiwasuku T, Boonmak J, Siriwong K, Ervithayasuporn V, Youngme S. Highly Sensitive and Selective Fluorescent Sensor Based on a Multi-responsive Ultrastable Amino-Functionalized Zn(Ⅱ)-MOF for Hazardous Chemicals[J]. Sens. Actuators B, 2019,284:403-413. doi: 10.1016/j.snb.2018.12.094

    32. [32]

      Senthilkumar S, Goswami R, Obasi N L, Neogi S. Construction of Pillar-Layer Metal-Organic Frameworks for CO2 Adsorption under Humid Climate: High Selectivity and Sensitive Detection of Picric Acid in Water[J]. ACS Sustainable Chem. Eng., 2017,5:11307-11315. doi: 10.1021/acssuschemeng.7b02087

    33. [33]

      Yang Y, Shen K, Lin J Z, Zhou Y, Liu Q Y, Hang C, Abdelhamid H N, Zhang Z Q, Chen H. A Zn-MOF Constructed from Electron-Rich π-Conjugated Ligands with an Interpenetrated Graphenelike Net as an Efficient Nitroaromatic Sensor[J]. RSC Adv., 2016,6:45475-45481. doi: 10.1039/C6RA00524A

    34. [34]

      Jia W, Ren S M, Xia H C, Zhang C, Zhang J F. An Ultra-stable Cd Coordination Polymer Based on Double-Chelated Ligand for Efficient Dual-Response of TNP and MnO4-[J]. Sens. Actuators B, 2020,317:128230-128240. doi: 10.1016/j.snb.2020.128230

    35. [35]

      Ren L L, Cui Y Y, Cheng A L, Gao E Q. Water-Stable Lanthanide-Based Metal-Organic Frameworks for Rapid and Sensitive Detection of Nitrobenzene Derivatives[J]. J. Solid State Chem., 2019,270:463-469. doi: 10.1016/j.jssc.2018.11.041

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    13. [13]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    14. [14]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    15. [15]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

Metrics
  • PDF Downloads(10)
  • Abstract views(512)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return