Citation: Zhong-Lian XIAO, Xuan-Yi WU, He-Yun TAN, Shi-You HAO. CeO2@C Synthesized from Orange Peel as Carbon Source and Its Removal Performance for Acid Dyes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 407-414. doi: 10.11862/CJIC.2022.062 shu

CeO2@C Synthesized from Orange Peel as Carbon Source and Its Removal Performance for Acid Dyes

  • Corresponding author: Shi-You HAO, sky54@zjnu.cn
  • Received Date: 31 July 2021
    Revised Date: 22 November 2021

Figures(13)

  • Using Ce(NO3)3·6H2O, orange peel as raw materials, aqueous ammonia as precipitant, CeO2·xH2O@OPP was synthesized via co-deposition method, and then CeO2@C composites were obtained by the calcination of CeO2·xH2O@OPP in N2. The resulted materials were characterized by FT-IR, X-ray diffraction, scanning electron microscope, Raman spectroscopy, UV-Vis, X-ray photoelectron spectroscopy, and photocurrent techniques. The results showed that Ce, C, O elements were evenly distributed in CeO2@C with many organic functional groups, abundant oxygen holes, and carbon bonds and that the organic functional groups in CeO2·xH2O@OPP, CeO2·xH2O, and CeO2@C were almost similar. The photocatalytic results illustrate that the introduction of C in CeO2@C is beneficial for the separation of photoelectrons and holes, and thus the improvement of photocurrent and photocatalytic efficiency and that the content of C in the resulted sample can greatly affect the adsorption and photocatalytic efficiency of organic dyes.
  • 加载中
    1. [1]

      Verma R, Samdarshi S K. In Situ Decorated Optimized CeO2 on Reduced Graphene Oxide with Enhanced Adsorptivity and Visible Light Photocatalytic Stability and Reusability[J]. J. Phys. Chem. C, 2016,20:22281-22290.

    2. [2]

      Yin D G, Zhao F F, Zhang L, Zhang X Y, Liu Y M, Zhang T T, Wu C L, Chen D W, Chen Z W. Greatly Enhanced Photocatalytic Activity of Semiconductor CeO2 by Integrating with Upconversion Nanocrystals and Grapheme[J]. RSC Adv., 2016,6:103795-103802. doi: 10.1039/C6RA19219J

    3. [3]

      Castellanos R M, Bassin J P, Dezotti M, Boaventura R A R, Vilar V J P. Tube-In-Tube Membrane Reactor for Heterogeneous TiO2 Photocatalysis with Radial Addition of H2O2[J]. Chem. Eng. J., 2020,395124998. doi: 10.1016/j.cej.2020.124998

    4. [4]

      Lee H K, Lee S W. Formation of Hollow Porous TiO2 Nanospheres via the Encapsulation of CO2 Nanobubbles for High-Performance Adsorption and Photocatalysis[J]. Dalton Trans., 2020,49:8274-8281. doi: 10.1039/D0DT01228A

    5. [5]

      Luo B Y, Chen W W, Ma J, Tian W, He C, Shui A Z, Du B. Fabrication of Tunable 1D Rod-like and 3D Yolk-like TiO2 Hierarchical Architectures for Efficient Photocatalysis[J]. J. Mater. Sci., 2020,55:3760-3773. doi: 10.1007/s10853-019-04247-4

    6. [6]

      Choi H, Khan S, Choi J, Dinh D T T, Lee S Y, Paik U, Cho S H, Kim S. Synergetic Control of Band Gap and Structural Transformation Foroptimizing TiO2 Photocatalysts[J]. Appl. Catal. B, 2017,210:513-521. doi: 10.1016/j.apcatb.2017.04.020

    7. [7]

      Huang Y C, Long B, Tang M N, Rui Z B, Balogum M S, Tong Y X, Ji H B. Bifunctional Catalytic Material: An Ultrastable and High-Performance Surface Defect CeO2 Nanosheets for Formaldehyde Thermal Oxidation and Photocatalytic Oxidation[J]. Appl. Catal. B, 2016,181:779-787. doi: 10.1016/j.apcatb.2015.08.047

    8. [8]

      Tambat S, Umale S, Sontakke S. Photocatalytic Degradation of Milling Yellow Dye Using Sol-Gel Synthesized CeO2[J]. Mater. Res. Bull., 2016,76:466-472. doi: 10.1016/j.materresbull.2016.01.010

    9. [9]

      Jiang N N, Li D Y, Liang L L, Xu Q, Shao L, Wang S B, Chen A Z, Wang J F. (Metal Yolk)/(Porous Ceria Shell) Nanostructures for High-Performance Plasmonic Photocatalysis under Visible Light[J]. Nano Res., 2020,13:1354-1362. doi: 10.1007/s12274-019-2599-x

    10. [10]

      Goncalves A, Silvestre-Albero J, Ramos-Fernández E V, Serrano-Ruiz J C, Orfao J J M, Sepúlveda-Escribano A, Pereira M F R. Highly Dispersed Ceria on Activated Carbon for the Catalyzed Ozonation of Organic Pollutants[J]. Appl. Catal. B, 2012,113-114:308-317. doi: 10.1016/j.apcatb.2011.11.052

    11. [11]

      Li M L, Zhang L X, Wu M Y, Du Y Y, Fan X Q, Wang M, Zhang L L, Kong Q L, Shi J L. Mesostructured CeO2/g-C3N4 Nanocomposites: Remarkably Enhanced Photocatalytic Activity for CO2 Reduction by Mutual Component Activations[J]. Nano Energy, 2016,19:145-155. doi: 10.1016/j.nanoen.2015.11.010

    12. [12]

      Wang H, Shang J, Xiao Z L, Aprea P, Hao S Y. Novel Construction of Carbon Bonds in CeO2@C with Efficiently Photocatalytic Activity[J]. Dyes Pigm., 2020,182108669. doi: 10.1016/j.dyepig.2020.108669

    13. [13]

      Qian J C, Chen Z G, Sun H, Chen F, Xu X, Wu Z Y, Li P, Ge W J. Enhanced Photocatalytic H2 Production on Three-Dimensional Porous CeO2/Carbon Nanostructure[J]. ACS Sustainable Chem. Eng., 2018,6:9691-9698. doi: 10.1021/acssuschemeng.8b00596

    14. [14]

      Xiao K X, Liu H, Li Y, Yang G Y, Wang Y J, Yao H. Excellent Performance of Porous Carbon from Urea-Assisted Hydrochar of Orange Peel for Toluene and Iodine Adsorption[J]. Chem. Eng. J., 2020,382122997. doi: 10.1016/j.cej.2019.122997

    15. [15]

      Irshad M S, Aziz M H, Fatima M, Rehman S U, Idrees M, Rana S, Shaheen F, Ahmed A, Javed M Q, Huang Q. Green Synthesis, Cytotoxicity, Antioxidant and Photocatalytic Activity of CeO2 Nanoparticles Mediated via Orange Peel Extract (OPE)[J]. Mater. Res. Express, 2019,60950a4. doi: 10.1088/2053-1591/ab3326

    16. [16]

      Liu B, Liu B B, Li Q J, Li Z P, Liu R, Zou X, Wu W, Cui W, Liu Z D, Li D M, Zou B, Cui T, Zou G T. Solvothermal Synthesis of Monodisperse Self-Assembly CeO2, Nanospheres and Their Enhanced Blue-Shifting in Ultraviolet Absorption[J]. J. Alloys Compd., 2010,503:519-524. doi: 10.1016/j.jallcom.2010.05.047

    17. [17]

      Gupta V K, Nayak A. Cadmium Removal and Recovery from Aqueous Solutions by Novel Adsorbents Prepared from Orange Peel and Fe2O3 Nanoparticles[J]. Chem. Eng. J., 2012,180:81-90. doi: 10.1016/j.cej.2011.11.006

    18. [18]

      Zhang G K, He Z L, Xu W. A Low-Cost and High Efficient Zirconium-Modified-Na-Attapulgite Adsorbent for Fluoride Removal from Aqueous Solutions[J]. Chem. Eng. J., 2012,183:315-324. doi: 10.1016/j.cej.2011.12.085

    19. [19]

      Feng N C, Guo X Y, Liang S, Zhu Y S, Liu J P. Biosorption of Heavy Metals from aqueous Solutions by Chemically Modified Orange Peel[J]. J. Hazard. Mater., 2011,185:49-54. doi: 10.1016/j.jhazmat.2010.08.114

    20. [20]

      Jänes A, Kurig H, Lust E. Characterization of Activated Nanoporous Carbon for Supercapacitor Electrode Materials[J]. Carbon, 2007,45:1226-1233. doi: 10.1016/j.carbon.2007.01.024

    21. [21]

      Corma A, Atienzar P, García H, Chane-Ching J Y. Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use[J]. Nat. Mater., 2004,3:394-397. doi: 10.1038/nmat1129

    22. [22]

      Gu L N, Meng G Y. Powder Synthesis and Characterization of Nanocrystalline CeO2 via the Combustion Processes[J]. Mater. Res. Bull., 2007,42:1323-1331. doi: 10.1016/j.materresbull.2006.10.015

    23. [23]

      Yan Y B, Miao J W, Yang Z H, Xiao F X, Yang H B, Liu B, Yang Y H. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications[J]. Chem. Soc. Rev., 2015,44:3295-346.

    24. [24]

      Mittal M, Gupta A, Pandey O P. Role of Oxygen Vacancies in Ag/Au Doped CeO2 Nanoparticles for Fast Photocatalysis[J]. Sol. Energy, 2018,165:206-216. doi: 10.1016/j.solener.2018.03.033

    25. [25]

      Zheng X G, Huang M, You Y H, Peng H, Wen J. Core-Shell Structured α-Fe2O3@CeO2 Heterojunction for the Enhanced Visible-Light Photocatalytic Activity[J]. Mater. Res. Bull., 2018,101:20-28. doi: 10.1016/j.materresbull.2018.01.007

    26. [26]

      HAO S Y, WANG H, ZHONG Y C, YU H M, CHEN H S. Synthesis and Visible Light Catalytic Performance of Mesoporous NH2-Ce-Pr-O[J]. Journal of the Chinese Society of Rare Earths, 2018,36:541-549.  

    27. [27]

      Hao S Y, Hou J, Aprea P, Pepe F. Mesoporous Ce-Pr-O Solid Solution with Efficient Photocatalytic Activity under Weak Daylight Irradiation[J]. Appl. Catal. B, 2014,160-161:566-573. doi: 10.1016/j.apcatb.2014.06.013

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    16. [16]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    17. [17]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(2)
  • Abstract views(461)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return