Citation: Yu-Xuan CHEN, Yu GONG, Wen-Da ZHANG, Xiao-Dong YAN, Zhi-Guo GU. An Iron(Ⅱ) Metal-Organic Layer: Synthesis, Structure and Ultrafast Biomimetic Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 519-527. doi: 10.11862/CJIC.2022.060 shu

An Iron(Ⅱ) Metal-Organic Layer: Synthesis, Structure and Ultrafast Biomimetic Catalytic Performance

  • Corresponding author: Zhi-Guo GU, zhiguogu@jiangnan.edu.cn
  • Received Date: 14 November 2021
    Revised Date: 13 January 2022

Figures(6)

  • A new two-dimensional metal-organic framework (Fe-MOF) was self-assembled by ferrous tetrafluoroborate hexahydrate, potassium tetracyanoplatinate trihydrate, and 4-picoline-N-oxide in water and ethanol. Singlecrystal X-ray crystallography reveals that Fe-MOF crystallized in the monoclinic space group P21/c. [Pt(CN)4]2- is bridged by four Fe atoms through the cyano group, while Fe atom is connected with four N atoms from [Pt(CN)4]2-, forming Fe-MOF with (4, 4)-grid structure. Fe-MOF is stacked by a two-dimensional layer in an AB mode along the caxis by virtue of van der Waals forces, and the layer distance is 0.6 nm. The Fe(Ⅱ) centers have two [FeN4O2] octahedral coordination environments: one of them is connected axially with two water molecules, while the other is connected axially with a water molecule and a 4-picoline-N-oxide. Metal-organic layer (Fe-MOL) was prepared by ultrasonically exfoliating Fe-MOF. Fe-MOL maintained the two-dimensional crystalline structure as evidenced by infrared spectroscopy (FT-IR) and X-ray powder diffraction (PXRD). Scanning electron microscope (SEM) and transmission electron microscope (TEM) characterizations showed that Fe-MOL had a nanolayered structure. Fe-MOL was proved to be an ultra-thin layered structure of about 5 nm by atomic force microscopy (AFM). Fe-MOL exhibited ultrafast catalytic speed and ultrahigh catalytic efficiency in the catalytic oxidation reaction of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) due to the coordination environment of the Fe(Ⅱ) center possessing a similar natural heme structure. The color of the solution changed from colorless to dark green in just 16 s, and the apparent second-order rate constant (kcat/Km; kcat is catalytic constant, Km is Michaelis constant) was as high as 4.70×106 mmol-1·L·s-1. Fe-MOL exhibited good cycle stability and it still had 90% catalytic activity after five catalytic cycles. The excellent catalytic efficiency of Fe-MOL exceeded most of the reported MOF biomimetic catalysts.
  • 加载中
    1. [1]

      Ma L, Jiang F B, Fan X, Wang L Y, He C, Zhou M, Li S, Luo H R, Cheng C, Qiu L. Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts[J]. Adv. Mater., 2020,32(49)2003065. doi: 10.1002/adma.202003065

    2. [2]

      Liang W B, Sumby C J, Doonan C J, Wied P, Carraro F, Sumby C J, Nidetzky B, Tsung C K, Falcaro P, Doonan C J. Metal-Organic Framework-Based Enzyme Biocompoesites[J]. Chem. Rev., 2021,121(3):1077-1129. doi: 10.1021/acs.chemrev.0c01029

    3. [3]

      Guan X Y, Chen F Q, Fang Q R, Qiu S L. Design and Applications of Three Dimensional Covalent Organic Frameworks[J]. Chem. Soc. Rev., 2020,49(5):1357-1384. doi: 10.1039/C9CS00911F

    4. [4]

      Cai H, Huang Y L, Li D. Biological Metal-Organic Frameworks: Structures, Host-Guest Chemistry and Bio-applications[J]. Coord. Chem. Rev., 2017,378(1):207-221.

    5. [5]

      Chen M H, Li H R, Liu C X, Liu J Y, Feng Y Q, Wee A G H, Zhang B. Porphyrin-and Porphyrinoid-Based Covalent Organic Frameworks (COFs): From Design, Synthesis to Applications[J]. Coord. Chem. Rev., 2021,435(15)213778.

    6. [6]

      Zhang X L, Tu R X, Lu Z, Peng J Y, Hou C T, Wang Z H. Hierarchi-cal Mesoporous Metal-Organic Frameworks Encapsulated Enzymes: Progress and Perspective[J]. Coord. Chem. Rev., 2021,443(15)214032.

    7. [7]

      Wang X L, Lan P C, Ma S Q. Metal-Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials[J]. ACS Cent. Sci., 2020,6(9):1497-1506. doi: 10.1021/acscentsci.0c00687

    8. [8]

      Magri A, Petriccione M, Gutierrez T J. Metal-Organic Frameworks for Food applications: A Review[J]. Food Chem., 2021,354129533. doi: 10.1016/j.foodchem.2021.129533

    9. [9]

      Tan W L, Wei T, Huo J, Loubidi M, Liu T T, Liang Y, Deng L B. Electrostatic Interaction-Induced Formation of Enzyme-on-MOF as Chemobiocatalyst for Cascade Reaction with Unexpectedly Acid-Stable Catalytic Performance[J]. ACS Appl. Mater. Interfaces, 2019,11(40):36782-36788. doi: 10.1021/acsami.9b13080

    10. [10]

      Feng D W, Liu T F, Su J, Bosch M, Wei Z W, Wan W, Yuan D Q, Chen Y P, Wang X, Wang K C, Lian X Z, Gu Z Y, Park J, Zou X D, Zhou H C. Stable Metal-Organic Frameworks Containing Single-Molecule Traps for Enzyme Encapsulation[J]. Nat. Commun., 2015,65979. doi: 10.1038/ncomms6979

    11. [11]

      Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts[J]. Angew. Chem. Int. Ed., 2012,51(41):10307-10310. doi: 10.1002/anie.201204475

    12. [12]

      Cao L Y, Wang T T, Wang C. Synthetic Strategies for Constructing Two-Dimensional Metal-Organic Layers (MOLs): A Tutorial Review[J]. Chin. J. Chem., 2018,36(8):754-764. doi: 10.1002/cjoc.201800144

    13. [13]

      Ashworth D J, Foster J A. Metal-Organic Framework Nanosheets (MONs): A New Dimension in Materials Chemistry[J]. J. Mater. Chem. A, 2018,6(34):16292-16307. doi: 10.1039/C8TA03159B

    14. [14]

      Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications[J]. Chem. Soc. Rev., 2018,47(16):6267-6295. doi: 10.1039/C8CS00268A

    15. [15]

      Ding Y J, Chen Y P, Zhang X L, Chen L, Dong Z H, Jiang H L, Xu H X, Zhou H C. Controlled Intercalation and Chemical Exfoliation of Layered Metal-Organic Frameworks Using a Chemically Labile Intercalating Agent[J]. J. Am. Chem. Soc., 2017,139(27):9136-9139. doi: 10.1021/jacs.7b04829

    16. [16]

      Cliffe M J, Castillo-Martínez E, Wu Y, Lee J, Forse A C, Firth F C N, Moghadam P Z, Fairen-Jimenez D, Gaultois M W, Hill J A, Magdysyuk O V, Slater B, Goodwin A L, Grey C P. Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework[J]. J. Am. Chem. Soc., 2017,139(15):5397-5404. doi: 10.1021/jacs.7b00106

    17. [17]

      Li P Z, Maeda Y, Xu Q. Top-Down Fabrication of Crystalline Metal-Organic Framework Nanosheets[J]. Chem. Commun., 2011,47(29):8436-8438. doi: 10.1039/c1cc12510a

    18. [18]

      Liu W, Peng Y Y, Wu S G, Chen Y C, Hoque M N, Ni Z P, Chen X M, Tong M L. Guest-Switchable Multi-step Spin Transitions in an Amine-Functionalized Metal-Organic Framework[J]. Angew. Chem. Int. Ed., 2017,56(47):14982-14986. doi: 10.1002/anie.201708973

    19. [19]

      Ni Z P, Liu J L, Hoque M N, Liu W, Li J Y, Chen Y C, Tong M L. Recent Advances in Guest Effects on Spin-Crossover Behavior in Hofmann-Type Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2017,335(15):28-43.

    20. [20]

      Otsubo K, Haraguchi T, Kitagawa H. Nanoscale Crystalline Architectures of Hofmann-Type Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2017,346:123-138. doi: 10.1016/j.ccr.2017.03.022

    21. [21]

      Haraguchi T, Otsubo K, Sakata O, Fujiwara A, Kitagawa H. Strain-Controlled Spin Transition in Heterostructured Metal-Organic Framework Thin Film[J]. J. Am. Chem. Soc., 2021,143(39):16128-16135. doi: 10.1021/jacs.1c06662

    22. [22]

      Pei J Y, Shao K, Wang J X, Wen H M, Yang Y, Cui Y J, Krishna R, Li B, Qian G D. A Chemically Stable Hofmann-Type Metal-Organic Framework with Sandwich-like Binding Sites for Benchmark Acetylene Capture[J]. Adv. Mater., 2020,32(24)1908275. doi: 10.1002/adma.201908275

    23. [23]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    24. [24]

      Sheldrick G M. Bruker Analytical X-ray Systems, Madison, WI, 1996.

    25. [25]

      Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, University of Göttingen, Germany, 1997.

    26. [26]

      Wang Q G, Yang Z M, Zhang X Q, Xiao X D, Chang C K, Xu B. A Supramolecular-Hydrogel-Encapsulated Hemin as an Artificial Enzyme to Mimic Peroxidase[J]. Angew. Chem. Int. Ed., 2007,119(23):4363-4367. doi: 10.1002/ange.200700404

    27. [27]

      Tassano E, Hall M. Enzymatic Self-Sufficient Hydride Transfer Pro-cesses[J]. Chem. Soc. Rev., 2019,48(23):5596-5615. doi: 10.1039/C8CS00903A

    28. [28]

      Castriciano M A, Romeo A, Baratto M C, Pogni R, Scolaro L M. Supramolecular Mimetic Peroxidase Based on Hemin and PAMAM Dendrimers[J]. Chem. Commun., 2008,6:688-690.

    29. [29]

      Wang X S, Chrzanowski M, Yuan D Q, Sweeting B S, Ma S Q. Covalent Heme Framework as a Highly Active Heterogeneous Biomimetic Oxidation Catalyst[J]. Chem. Mater., 2014,26(4):1639-1644. doi: 10.1021/cm403860t

    30. [30]

      Liu Y, Yan X D, Li T, Zhang W D, Fu Q T, Lu H S, Wang X, Gu Z G. Three-Dimensional Porphyrin-Based Covalent Organic Frameworks with Tetrahedral Building Blocks for Single-Site Catalysis[J]. New J. Chem., 2019,43(43):16907-16914. doi: 10.1039/C9NJ04017J

    31. [31]

      Zhu W, Ding Z D, Wang X, Li T, Shen R, Li Y X, Li Z J, Ren X H, Gu Z G. A Three-Dimensional Porphyrin-Based Porous Organic Polymer with Excellent Biomimetic Catalytic Performance[J]. Polym. Chem., 2017,8(30):4327-4331. doi: 10.1039/C7PY00876G

    32. [32]

      Rodríguez-López J N, Lowe D J, Hernandez-Ruiz J, Hiner A N P, García-Cánovas F, Thorneley R N F. Mechanism of Reaction of Hydrogen Peroxide with Horseradish Peroxidase: Identification of Intermediates in the Catalytic Cycle[J]. J. Am. Chem. Soc., 2001,123(48):11838-11847. doi: 10.1021/ja011853+

    33. [33]

      Rodríguez-López J N, Gilabert M A, Tudela J, Thorneley R N F, García-Cánovas F. Reactivity of Horseradish Peroxidase Compound Ⅱ toward Substrates: Kinetic Evidence for Two-Step Mechanism[J]. Biochemistry, 2000,39(43):13201-13209. doi: 10.1021/bi001150p

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(1)
  • Abstract views(403)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return