Citation: Qing LIN, Miao-Miao LIU, Xi-Hang WU, Shui-Ping LI, Yuan-Yuan WANG, Xue-Min HU, Wei WANG, Xiao-Juan ZHANG. Preparation and Photocatalytic Performances of Au@g-C3N4 Scaffold[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 589-598. doi: 10.11862/CJIC.2022.058 shu

Preparation and Photocatalytic Performances of Au@g-C3N4 Scaffold

  • Corresponding author: Qing LIN, lnqing@jit.edu.cn
  • Received Date: 29 September 2021
    Revised Date: 20 January 2022

Figures(11)

  • The plastic melamine-formaldehyde, which was synthesized from melamine, formaldehyde, and urea, was used as the precursor for the formation of the melamine-formaldehyde scaffold by the microwave foaming method. Then, Au was deposited on the melamine-formaldehyde scaffold by the magnetron sputtering. Finally, Au deposited graphite carbon nitride (Au@g-C3N4) scaffold with a specific surface area of 1 480 m2·g-1 was successfully prepared by the thermal polymerization at 550 ℃. After deposited 6% Au, the UV - Vis spectrum of Au@g - C3N4 scaffold showed a new absorption peak at 550 nm, its absorption band edge was shifted to 507 nm, and its bandgap was reduced to 2.45 eV. Moreover, the fluorescence intensity and the electrochemical impedance decreased significantly, and the photocurrent increased from 0.28 to 0.62 μA·cm-2. The deposition of Au not only widens the UV - Vis absorption performance of Au@g-C3N4 scaffold but also inhibits the recombination of the electron -hole pairs. The photocatalytic performance of Au@g-C3N4 scaffold was stable, and its photocatalytic degradation rate for rhodamine B was about one time higher than that of g - C3N4 scaffold. Additionally, the Au@g - C3N4 scaffold would be easy to recycle and be reused in the applications, because the Au@g-C3N4 scaffold has suitable tensile strength and toughness.
  • 加载中
    1. [1]

      Lin Q, Li S P, Zhao Q Y, Wang W, Zhang X J, Hao L Y. Synergistic Effectiveness of Eggshell Membranes-supported Zinc Oxide Materials on the Removal of Organic Dyes from Wastewater[J]. Desalin. Water Treat., 2019,138:346-352. doi: 10.5004/dwt.2019.23248

    2. [2]

      Yan S C, Li Z S, Zou Z G. Photodegradation Performance of g - C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009,25(17):10397-10401. doi: 10.1021/la900923z

    3. [3]

      Wen J Q, Xie J, Chen X B, Li X. A Review on g-C3N4-Based Photocatalysts[J]. Appl. Surf. Sci., 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    4. [4]

      HOU J H, CAI R, SHENG M, JIANG K. Preparation and Visible Light Photocatalysis of Porous Nanosheet Graphitic Carbon Nitride[J]. Chinese J. Inorg. Chem., 2018,34(3):467-474.  

    5. [5]

      WANG H, ZHANG X D, XIE Y. Recent Progresses on the Photoexcitation Processes of Polymeric Carbon Nitride-Based Materials[J]. Chinese J. Inorg. Chem., 2017,33(11):1897-1913. doi: 10.11862/CJIC.2017.249 

    6. [6]

      LU Y, SHANGGUAN L, ZHANG H, WANG Y, TANG Y Y, SUN J H, LIU G X. Preparation of Carbon Self-Doping Graphic Carbon Nitride Nanosheets for Photocatalytic H2 Evolution Performance under Visible-Light Irradiation[J]. Chinese J. Inorg. Chem., 2021,37(4):668-674.  

    7. [7]

      Tan C E, Lee J T, Su E C, Wey M Y. Facile Approach for Z-Scheme Type Pt/g - C3N4/SrTiO3 Heterojunction Semiconductor Synthesis via Low - Temperature Process for Simultaneous Dyes Degradation and Hydrogen Production[J]. Int. J. Hydrogen Energy, 2020,45(24):13330-13339. doi: 10.1016/j.ijhydene.2020.03.034

    8. [8]

      Zhang W J, Xu D T, Wang F J, Chen M. AgCl/Au/g - C3N4 Ternary Composites: Efficient Photocatalysts for Degradation of Anionic Dyes[J]. J. Alloys Compd., 2021,868159266. doi: 10.1016/j.jallcom.2021.159266

    9. [9]

      ZHU K, OUYANG J, LIU J M, ZHU Y X, ZENG Q, CUI Y J. Preparation and Photocatalytic Hydrogen Evolution from Water of Oxygen Doped Carbon Nitride Nanosheets[J]. Chinese J. Inorg. Chem., 2019,35(6):1005-1012.  

    10. [10]

      NING X, WU Y T, WANG X F, LIU Y L. Preparation and Photocatalytic Activity of g - C3N4/SnO2 Composite[J]. Chinese J. Inorg. Chem., 2019,35(12):2243-2252. doi: 10.11862/CJIC.2019.272 

    11. [11]

      Wang W, Fang J J, Huang X. Different Behaviors Between Interband and Intraband Transitions Generated Hot Carriers on g-C3N4/Au for Photocatalytic H2 Production[J]. Appl. Surf. Sci., 2020,513145830. doi: 10.1016/j.apsusc.2020.145830

    12. [12]

      Baruah K, Kumar A, Deb P. Visible Light Active Au@g-C3N4 Core-Shell Plasmonic Photocatalyst[J]. Mater. Today, 2021,47(8):1627-1632.

    13. [13]

      Nasri A, Jaleh B, Nezafat Z, Nasrollahzadeh M, Azizian S, Jang H W, Shokouhimehr M. Fabrication of g-C3N4 /Au Nanocomposite Using Laser Ablation and Its Application as an Effective Catalyst in the Reduction of Organic Pollutants in Water[J]. Ceram. Int., 2021,47(3):3565-3572. doi: 10.1016/j.ceramint.2020.09.204

    14. [14]

      Liu Y L, Zhao X W, Ye L. A Novel Elastic Urea-Melamine-Formaldehyde Foam: Structure and Properties[J]. Ind. Eng. Chem. Res., 2016,55(32):8743-8750. doi: 10.1021/acs.iecr.6b01957

    15. [15]

      Wang D W, Zhang X X, Luo S, Li S. Preparation and Property Analysis of Melamine Formaldehyde Foam[J]. Adv. Mater. Phys. Chem., 2012,2(4):63-67. doi: 10.4236/ampc.2012.24B018

    16. [16]

      Mishra P M, Pattnaik S, Devi A P. Green Synthesis of Bio - based Au@g-C3N4 Nanocomposite for Photocatalytic Degradation of Methyl Orange[J]. Mater. Today, 2021,47(5):1218-1223.

    17. [17]

      Nanda K, Sahu S, Behera S. Liquid-Drop Model for the Size-Dependent Melting of Low-Dimensional Systems[J]. Phys. Rev. A, 2002,66(1):90-95.

    18. [18]

      Patnaik S, Sahoo D P, Parida K. Photo - Catalytic H2 Evolution over Au Modified Mesoporous g-C3N4[J]. Mater. Today, 2021,35:247-251.

    19. [19]

      Zhao X X, Guan J R, Li J Z, Li X, Wang H Q, Huo P W, Yan Y S. CeO2/3D g - C3N4 Heterojunction Deposited with Pt Cocatalyst for Enhanced Photocatalytic CO2 Reduction[J]. Appl. Surf. Sci., 2021,537147891. doi: 10.1016/j.apsusc.2020.147891

    20. [20]

      Wang D D, Li Y H, Yu B, Li H J, Jiang W, Deng X, Wen Y, Liu C B, Che G B. Improved Visible- Light Driven Photocatalysis by Loading Au onto C3N4 Nanorods for Degradation of RhB and Reduction of CO2[J]. Adv. Powder Technol., 2021,32(5):1653-1662. doi: 10.1016/j.apt.2021.03.022

    21. [21]

      Papailias I, Giannakopoulou T, Todorova N, Demotikali D, Vaimakis T, Trapalis C. Effect of Processing Temperature on Structure and Photocatalytic Properties of g-C3N4[J]. Appl. Surf. Sci., 2015,358:278-286. doi: 10.1016/j.apsusc.2015.08.097

    22. [22]

      Jiang J Z, Ou-yang L, Zhu L H, Zheng A M, Zou J, Yi X F, Tang H Q. Dependence of Electronic Structure of g-C3N4 on the Layer Number of Its Nanosheets: A Study by Raman Spectroscopy Coupled with First-Principles Calculations[J]. Carbon, 2014,80:213-221. doi: 10.1016/j.carbon.2014.08.059

    23. [23]

      Li H, Jing Y, Ma X L, Liu T Y, Yang L F, Liu B, Yin S, Wei Y Z, Wang Y H. Construction of a Well - Dispersed Ag/graphene - like g - C3N4 Photocatalyst and Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv., 2017,7(14):8688-8693. doi: 10.1039/C6RA26498K

    24. [24]

      Qin Y Q, Lu J, Meng F Y, Lin X Y, Feng Y H, Yan Y, Meng M. Rationally Constructing of a Novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic Junction towards Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution and Mechanism Insight[J]. J. Colloid Interface Sci., 2021,586:576-587. doi: 10.1016/j.jcis.2020.10.123

    25. [25]

      Faisal M, Jalalah M, Harraz F A, El-Toni A M, Khan A, Al-Assiri M S. Au Nanoparticles - Doped g - C3N4 Nanocomposites for Enhanced Photocatalytic Performance under Visible Light Illumination[J]. Ceram. Int., 2020,46(14):22090-22101. doi: 10.1016/j.ceramint.2020.05.250

    26. [26]

      Pei F B, Feng S S, Wu Y, Lv X C, Wang H L, Chen S M, Hao Q L, Cao Y, Lei W, Tong Z Y. Label-Free Photoelectrochemical Immunosensor for Aflatoxin B1 Detection Based on the Z - Scheme Heterojunction of g-C3N4/Au/WO3[J]. Biosens. Bioelectron., 2021,189113373. doi: 10.1016/j.bios.2021.113373

    27. [27]

      TANG J, LI Z F, YANG X F, LI J, ZHANG T T. Effect of Dry and Wet Environment of Ball Milling on Visible Light Catalytic Performance of Sulfur - Doped Carbon Nitride[J]. Chinese J. Inorg. Chem., 2020,36(3):475-484.  

    28. [28]

      Mousavi M, Habibi - Yangjeh A. Decoration of Fe3 O4 and CoWO4 Nanoparticles over Graphitic Carbon Nitride: Novel Visible - Light - Responsive Photocatalysts with Exceptional Photocatalytic Performances[J]. Mater. Res. Bull., 2018,105:159-171. doi: 10.1016/j.materresbull.2018.04.052

    29. [29]

      Fu J W, Yu J G, Jiang C J, Cheng B. g-C3N4-Based Heterostructured Photocatalysts[J]. Adv. Energy Mater., 2018,8(3)1701503. doi: 10.1002/aenm.201701503

    30. [30]

      CHEN Y, LIU H B. Construction and Photocatalytic Performance of Ultrathin Graphitic Carbon Nitride Nanosheets[J]. Chinese J. Inorg. Chem., 2017,33(12):2255-2261. doi: 10.11862/CJIC.2017.218 

    31. [31]

      Fu Y S, Huang T, Jia B Q, Zhu J W, Wang X. Reduction of Nitrophenols to Aminophenols under Concerted Catalysis by Au/g-C3N4 Contact System[J]. Appl. Catal. B, 2017,202:430-437. doi: 10.1016/j.apcatb.2016.09.051

    32. [32]

      Lee J T, Chen Y J, Su E C, Wey M Y. Synthesis of Solar - Light Responsive Pt/g-C3N4 /SrTiO3 Composite for Improved Hydrogen Production: Investigation of Pt/g-C3N4/SrTiO3 Synthetic Sequences[J]. Int. J. Hydrogen Energy, 2019,44(39):21413-21423. doi: 10.1016/j.ijhydene.2019.06.178

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(3)
  • Abstract views(538)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return