Citation: Yong-Gang LU, Bo XIANG, Zhen-Tao WANG, Peng ZHANG, Fang CHEN, Jian XIE, Xin-Bing ZHAO. Single-Crystal LiNi0.6Co0.2Mn0.2O2: Facile Preparation and Electrochemical Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 569-577. doi: 10.11862/CJIC.2022.055 shu

Single-Crystal LiNi0.6Co0.2Mn0.2O2: Facile Preparation and Electrochemical Performance

  • Corresponding author: Xin-Bing ZHAO, zhaoxb@zju.edu.cn
  • Received Date: 25 November 2021
    Revised Date: 4 January 2022

Figures(5)

  • Single - crystal LiNi0.6Co0.2Mn0.2O2 (NCM622) was prepared by a facile solid - state calcination method at 910 ℃ using Ni0.6Co0.2Mn0.2(OH)2 and LiOH·H2O as the precursors with no excess of LiOH·H2O. As-obtained material can be used to make electrode slurry directly with no need to wash, dry, and anneal. Electrochemical tests showed that the single-crystal NCM622 has a high specific capacity and a long cycle life. The first discharge capacity of the sample was 181.2 mAh·g-1 at 0.1C and 174.4 mAh·g-1 at 0.3C. Under a current density of 0.3C, the sample delivered a discharge capacity of 150.7 mAh·g-1 after 300 cycles with a capacity retention of 86.4%. After 500 cycles at 0.3C, a relatively high discharge capacity of 141.2 mAh·g-1 was still maintained with a capacity retention of 81.0%. The electrochemical performance of single-crystal NCM622 prepared at 910 ℃ was better than that of polycrystalline NCM622 prepared at 850 ℃ and large-size single-crystal NCM622 prepared at 940 and 960 ℃, indicating that the reasonable calcination temperature for single crystal NCM622 was 910 ℃. The results show that the structural stability of single-crystal NCM622 can be maintained during repeated cycling.
  • 加载中
    1. [1]

      Noh H J, Youn S, Yoon C S, Sun Y K. Comparison of the Structural and Electrochemical Properties of Layered LiNixCoyMnzO2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries[J]. J. Power Sources, 2013,233:121-130. doi: 10.1016/j.jpowsour.2013.01.063

    2. [2]

      Chen M M, Zhao E Y, Chen D F, Wu M M, Han S B, Huang Q Z, Yang L M, Xiao X L, Hu Z B. Decreasing Li/Ni Disorder and Improving the Electrochemical Performances of Ni - Rich LiNi0.8Co0.1Mn0.1O2 by Ca Doping[J]. Inorg. Chem., 2017,56(14):8355-8362. doi: 10.1021/acs.inorgchem.7b01035

    3. [3]

      Zheng S Y, Hong C Y, Guan X Y, Xiang Y X, Liu X S, Xu G L, Liu R, Zhong G M, Zheng F, Li Y X, Zhang X Y, Ren Y, Chen Z H, Amine K, Yang Y. Correlation Between Long Range and Local Structural Changes in Ni-Rich Layered Materials During Charge and Discharge Process[J]. J. Power Sources, 2019,412:336-343. doi: 10.1016/j.jpowsour.2018.11.053

    4. [4]

      Joshi T, Eom K, Yushin G, Fuller T F. Effects of Dissolved Transition Metals on the Electrochemical Performance and SEI Growth in Lithium-Ion Batteries[J]. J. Electrochem. Soc., 2014,161(12):A1915-A1921. doi: 10.1149/2.0861412jes

    5. [5]

      Wandt J, Freiberg A, Thomas R, Gorlin Y, Siebel A, Jung R, Gasteiger H A, Tromp M. Transition Metal Dissolution and Deposition in Li-Ion Batteries Investigated by Operando X-ray Absorption Spectroscopy[J]. J. Mater. Chem. A, 2016,4(47):18300-18305. doi: 10.1039/C6TA08865A

    6. [6]

      Li J, Liu H S, Xia J, Cameron A R, Nie M Y, Botton G A, Dahn J R. The Impact of Electrolyte Additives and Upper Cut-Off Voltage on the Formation of a Rocksalt Surface Layer in LiNi0.8Mn0.1Co0.1O2 Electrodes[J]. J. Electrochem. Soc., 2017,164(4):A655-A665. doi: 10.1149/2.0651704jes

    7. [7]

      Ryu H H, Park K J, Yoon C S, Sun Y K. Capacity Fading of Ni-Rich LiNixCoyMn1-x-yO2 (0.6 < x < 0.95) Cathodes for High - Energy - Density Lithium - Ion Batteries: Bulk or Surface Degradation[J]. Chem. Mater., 2018,30(3):1155-1163. doi: 10.1021/acs.chemmater.7b05269

    8. [8]

      Bak S M, Hu E Y, Zhou Y N, Yu X Q, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q, Nam K W. Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy[J]. ACS Appl. Mater. Interfaces, 2014,6(24):22594-22601. doi: 10.1021/am506712c

    9. [9]

      Yang J, Xia Y Y. Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode During High-Voltage Cycling by Introducing Low - Content Li2MnO3[J]. ACS Appl. Mater. Interfaces, 2016,8(2):1297-1308. doi: 10.1021/acsami.5b09938

    10. [10]

      REN M M, LIU Z P, YUAN Z L, WANG Y, FAN G X, LIU B Z, LUO C G. Microscopic Mechanism of Influence of Doping F on Structure and Performance of LiNi0.8Co0.1Mn0.1O2[J]. Chinese J. Inorg. Chem., 2021,37(6):1046-1054.  

    11. [11]

      Chen Q C, Yan G J, Luo L M, Chen F, Xie T F, Dai S C, Yuan M L. Enhanced Cycling Stability of Mg-F Co-modified LiNi0.6Co0.2Mn0.2-yMgyO2-zFz for Lithium - Ion Batteries[J]. Trans. Nonferrous Met. Soc. China, 2018,28(7):1397-1403. doi: 10.1016/S1003-6326(18)64778-8

    12. [12]

      Wang D, Li X H, Wang Z X, Guo H J, Xu Y, Fan Y L, Ru J J. Role of Zirconium Dopant on the Structure and High Voltage Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Lithium Ion Batteries[J]. Electrochim. Acta, 2016,188:48-56. doi: 10.1016/j.electacta.2015.11.093

    13. [13]

      Liu W, Li X F, Hao Y C, Xiong D B, Shan H, Wang J J, Xiao W, Yang H J, Yang H, Kou L, Tian Z Y, Shao L, Zhang C. Functional Passivation Interface of LiNi0.8Co0.1Mn0.1O2 toward Superior Lithium Storage[J]. Adv. Funct. Mater., 2021,31(13)2008301. doi: 10.1002/adfm.202008301

    14. [14]

      DING G Y, GAO Y, LI Y H, ZHU Z, WANG Q L, JING X G, YAN F Q, XU G J, YUE Z H, LI X M, SUN F G. In Situ Reactive Coating of Fast Ionic Conductor LiTi2(PO4)3 on LiNi0.8Co0.1Mn0.1O2 Cathode Materials for High - Performance Li - Ion Batteries[J]. Chinese J. Inorg. Chem., 2020,36(12):2307-2314. doi: 10.11862/CJIC.2020.239 

    15. [15]

      Zou P J, Lin Z H, Fan M N, Wang F, Liu Y, Xiong X H. Facile and Efficient Fabrication of Li3PO4 - Coated Ni - Rich Cathode for High - Performance Lithium-Ion Battery[J]. Appl. Surf. Sci., 2020,504144506. doi: 10.1016/j.apsusc.2019.144506

    16. [16]

      Song B H, Li W D, Oh S M, Manthiram A. Long - Life Nickel - Rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2017,9(11):9718-9725. doi: 10.1021/acsami.7b00070

    17. [17]

      Wang L, Mu D B, Wu B R, Yang G C, Gai L, Liu Q, Fan Y J, Peng Y Y, Wu F. Enhanced Electrochemical Performance of Lithium Metasilicate-Coated LiNi0.6Co0.2Mn0.2O2 Ni-Rich Cathode for Li-Ion Batteries at High Cutoff Voltage[J]. Electrochim. Acta, 2016,222:806-813. doi: 10.1016/j.electacta.2016.11.041

    18. [18]

      Sun Y K, Chen Z, Noh H J, Lee D J, Jung H G, Ren Y, Wang S, Yoon C S, Myung S T, Amine K. Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries[J]. Nat. Mater., 2012,11(11):942-947. doi: 10.1038/nmat3435

    19. [19]

      Hou P Y, Zhang L Q, Gao X P. A High-Energy Full Concentration-Gradient Cathode Material with Excellent Cycle and Thermal Stability for Lithium Ion Batteries[J]. J. Mater. Chem. A, 2014,2(40):17130-17138. doi: 10.1039/C4TA03158J

    20. [20]

      Li Y, Xu R, Ren Y, Lu J, Wu H M, Wang L F, Miller D J, Sun Y K, Amine K, Chen Z H. Synthesis of Full Concentration Gradient Cathode Studied by High Energy X-ray Diffraction[J]. Nano Energy, 2016,19:522-531. doi: 10.1016/j.nanoen.2015.07.019

    21. [21]

      Li J, Li H Y, Stone W, Weber R, Hy S, Dahn J R. Synthesis of Single Crystal LiNi0.5Mn0.3Co0.2O2 for Lithium Ion Batteries[J]. J. Electrochem. Soc., 2017,164(14):A3529-A3537. doi: 10.1149/2.0401714jes

    22. [22]

      Li J, Cameron A R, Li H, Glazier S, Xiong D, Chatzidakis M, Allen J, Botton G A, Dahn J R. Comparison of Single Crystal and Polycrystalline LiNi0.5Mn0.3Co0.2O2 Positive Electrode Materials for High Voltage Li-Ion Cells[J]. J. Electrochem. Soc., 2017,164(7):A1534-A1544. doi: 10.1149/2.0991707jes

    23. [23]

      Xiong X H, Wang Z X, Yue P, Guo H J, Wu F X, Wang J X, Li X H. Washing Effects on Electrochemical Performance and Storage Characteristics of LiNi0.8Co0.1Mn0.1O2 as Cathode Material for Lithium-Ion Batteries[J]. J. Power Sources, 2013,222:318-325. doi: 10.1016/j.jpowsour.2012.08.029

    24. [24]

      MAO G H, XIAO F M, TANG R H, HUANG L, LI J, WANG Y. Effect of Water Washing and Re - sintering Temperature on Microstructure and Electrochemical Properties of High Nickel Ternary Material LiNi0.88Co0.77Al0.05O2[J]. Chinese J. Inorg. Chem., 2021,37(9):1649-1658.  

    25. [25]

      Li H Y, Li J, Ma X W, Dahn J R. Synthesis of Single Crystal LiNi0.6Mn0.2Co0.2O2 with Enhanced Electrochemical Performance for Lithium Ion Batteries[J]. J. Electrochem. Soc., 2018,165(5):A1038-A1045. doi: 10.1149/2.0951805jes

    26. [26]

      Kimijima T, Zettsu N, Teshima K. Growth Manner of Octahedral - Shaped LiNi1/3Co1/3Mn1/3O2 Single Crystals in Molten Na2SO4[J]. Cryst. Growth Des., 2016,16(5):2618-2623. doi: 10.1021/acs.cgd.5b01723

    27. [27]

      Kim Y. Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux: Morphology and Performance as a Cathode Material for Lithium Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2012,4(5):2329-2333. doi: 10.1021/am300386j

    28. [28]

      Qian G N, Zhang Y T, Li L S, Zhang R X, Xu J M, Cheng Z J, Xie S J, Wang H, Rao Q L, He Y S, Shen Y B, Chen L W, Tang M, Ma Z F. Single-Crystal Nickel-Rich Layered -Oxide Battery Cathode Materials: Synthesis, Electrochemistry, and Intra-Granular Fracture[J]. Energy Storage Mater., 2020,27:140-149. doi: 10.1016/j.ensm.2020.01.027

    29. [29]

      Liu Y L, Harlow J, Dahn J R. Microstructural Observations of "Single Crystal"Positive Electrode Materials before and after Long Term Cycling by Cross - Section Scanning Electron Microscopy[J]. J. Electrochem. Soc., 2020,167(2)020512. doi: 10.1149/1945-7111/ab6288

    30. [30]

      Zhu J, Chen G Y. Single - Crystal Based Studies for Correlating the Properties and High-Voltage Performance of LiNixMnyCo1-x-yO2 Cathodes[J]. J. Mater. Chem. A, 2019,7(10):5463-5474. doi: 10.1039/C8TA10329A

    31. [31]

      Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhan J G, Qi Y, Xiao J. Reversible Planar Gliding and Microcracking in a Single - Crystalline Ni - Rich Cathode[J]. Science, 2020,370(6522):1313-1317. doi: 10.1126/science.abc3167

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(2)
  • Abstract views(390)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return