Citation: Xiao-Dong HUANG, Jiong-Jia CHENG, Cheng-Long TAO, Jian WANG, Xiao-Feng WANG, Gang WU, Guang-Xiang LIU. Barium Complex In Situ Synthesized from 1, 4, 5, 8-Naphthalene Tetracarboxylic Acid: Structure, Detection of Aromatic Amines, and Use as a Precursor of Nano BaCO3[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 559-568. doi: 10.11862/CJIC.2022.053 shu

Barium Complex In Situ Synthesized from 1, 4, 5, 8-Naphthalene Tetracarboxylic Acid: Structure, Detection of Aromatic Amines, and Use as a Precursor of Nano BaCO3

  • Corresponding author: Xiao-Feng WANG, wangxf0215@163.com
  • Received Date: 24 September 2021
    Revised Date: 27 December 2021

Figures(14)

  • Using 1, 4, 5, 8-naphthalene tetracarboxylic acid as a raw material, a luminescent barium-based metalorganic framework (MOF), [Ba(dna)(H2O)2]n (1, H2dna=1, 8-naphthalic anhydride-4, 5-dicarboxylic), with a 3D topological structure was synthesized by in situ reaction under solvothermal conditions, and characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, and powder X-ray diffraction. The structural analysis demonstrates that it has the underlying 3D topology, encompassing a π-conjugated organic ligand with an anhydride group. It exhibited a low detection limit for aromatic amines in an aqueous solution, which may be driven by an anhydride amine reaction between the ligand and the hosted amines, with a significant enhancement of the emission intensity and visual color change. Furthermore, micro-crystalline BaCO3 particles can be prepared through direct calcination of complex 1 as a precursor at moderately elevated temperatures.
  • 加载中
    1. [1]

      Merchant Z M, Cheng S G G. Developments in Characterization of Foods Using Antibodies//Gaonkar A G. Characterization of Foods, Emerging Methods. New York: Elsevier Science, 1995: 347-376

    2. [2]

      Bao B, Yuwen L L, Zheng X, Weng L, Zhu X, Zhan X, Wang L. A Fluorescent Conjugated Polymer for Trace Detection of Diamines and Biogenic Polyamines[J]. J. Mater. Chem., 2010,20(43):9628-9634. doi: 10.1039/c0jm01467b

    3. [3]

      Kaur N, Chopra S, Singh G, Raj P, Bhasin A, Sahoo S K, Kuwar A, Singh N. Chemosensors for Biogenic Amines and Biothiols[J]. J. Mater. Chem. B, 2018,6(30):4872-4902. doi: 10.1039/C8TB00732B

    4. [4]

      Medina M Á, Urdiales J L, Rodríguez-Caso C, Ramírez F J, Sanchez-Jiménez F. Biogenic Amines and Polyamines: Similar Biochemistry for Different Physiological Missions and Biomedical Applications[J]. Crit. Rev. Biochem. Mol. Biol., 2003,38(1):23-59. doi: 10.1080/713609209

    5. [5]

      Kumpf J, Bunz U H F. Aldehyde-Appended Distyrylbenzenes: Amine Recognition in Water[J]. Chem. Eur. J., 2012,18(29):8921-8924. doi: 10.1002/chem.201200930

    6. [6]

      Comes M, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Villaescusa L A, Amoros P, Beltran D. Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica[J]. Adv. Mater., 2004,16(20):1783-1786. doi: 10.1002/adma.200400143

    7. [7]

      Hinoue T, Miyata M, Hisaki I, Tohnai N. Guest-Responsive Fluorescence of Inclusion Crystals with π-Stacked Supramolecular Beads[J]. Angew. Chem. Int. Ed., 2012,51(1):155-158. doi: 10.1002/anie.201106849

    8. [8]

      Stetter J R, Penrose W R, Yao S. Sensors, Chemical Sensors, Electrochemical Sensors, and ECS[J]. J. Electrochem. Soc., 2003,150(2):11-16.  

    9. [9]

      Zhou D Y, Wang Y Y, Jia J, Yu W Z, Qu B F, Li X, Sun X. H-Bonding and Charging Mediated Aggregation and Emission for Fluorescence Turn-On Detection of Hydrazine Hydrate[J]. Chem. Commun., 2015,51(53):10656-10659. doi: 10.1039/C5CC02897C

    10. [10]

      Mani P, Ojha A A, Reddy V S, Mandal S. "Turn-On"Fluorescence Sensing and Discriminative Detection of Aliphatic Amines Using a 5-Fold-Interpenetrated Coordination Polymer[J]. Inorg. Chem., 2017,56(12):6772-6775. doi: 10.1021/acs.inorgchem.7b00787

    11. [11]

      Yin X M, Gao L L, Li P, Bu R, Sun W J, Gao E Q. Fluorescence Turn-On Response Amplified by Space Confinement in Metal-Organic Frameworks[J]. ACS Appl. Mater. Interfaces, 2019,11(50):47112-47120. doi: 10.1021/acsami.9b18307

    12. [12]

      Liu Z Q, HUANG Y Q, SUN W Y. Progress in Fluorescent Recognition and Sensing of Solvent and Small Organic Molecules Based on Metal-Organic Frameworks[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244

    13. [13]

      LIU Z, CHEN X, FENG Y L. Two Series of (4, 8)-Connected Lanthanide-Metal Organic Frameworks Based on a Tetra-carboxylate Ligand for Sensing of Small Molecules[J]. Chinese J. Inorg. Chem., 2016,32(8):1413-1420.  

    14. [14]

      Kreno L E, Leong L E, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal-Organic Framework Materials as Chemical Sensors[J]. Chem. Rev., 2012,112(2):1105-1125. doi: 10.1021/cr200324t

    15. [15]

      Yu C X, Chen J, Zhang Y, Song W B, Li X Q, Chen F J, Zhang Y J, Liu D, Liu L L. Highly Efficient and Selective Removal of Anionic Dyes from Aqueous Solution by Using a Protonated Metal-Organic Framework[J]. J. Alloys Compd., 2021,853157383. doi: 10.1016/j.jallcom.2020.157383

    16. [16]

      Mallick A, El-Zohry A M, Shekhah O, Yin J, Jia J T, Aggarwal H, Emwas A, Mohammed O F, Eddaoudi M. Unprecedented Ultralow Detection Limit of Amines Using a Thiadiazole-Functionalized Zr(Ⅳ)-Based Metal-Organic Framework[J]. J. Am. Chem. Soc., 2019,141(18):7245-7249. doi: 10.1021/jacs.9b01839

    17. [17]

      Hazra A, Bej S, Mondal A, Murmu N C, Banerjee P. Discerning Detection of Mutagenic Biopollutant TNP from Water and Soil Samples with Transition Metal-Containing Luminescence Metal-Organic Frameworks[J]. ACS Omega, 2020,5(26):15949-15961. doi: 10.1021/acsomega.0c01194

    18. [18]

      Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-Pore Apertures in a Series of Metal-Organic Frameworks[J]. Science, 2012,336(6084):1018-1023. doi: 10.1126/science.1220131

    19. [19]

      Van-Humbeck J F, McDonald T M, Jing X, Wiers B M, Zhu G, Long J R. Ammonia Capture in Porous Organic Polymers Densely Functionalized with Brønsted Acid Groups[J]. J. Am. Chem. Soc., 2014,136(6):2432-2440. doi: 10.1021/ja4105478

    20. [20]

      Marsh C, Han X, Li J N, Lu Z Z, Argent S P, Silva I, Cheng Y Q, Daemen L L, Ramirez-Cuesta A J, Thompson S P, Blake A J, Yang S H, Schröder M. Exceptional Packing Density of Ammonia in a Dual-Functionalized Metal-Organic Framework[J]. J. Am. Chem. Soc., 2021,143(17):6586-6592. doi: 10.1021/jacs.1c01749

    21. [21]

      Sun L B, Li Y, Liang Z Q, Yua J H, Xua R R. Structures and Properties of Lanthanide Metal-Organic Frameworks Based on a 1, 2, 3-Triazole-Containing Tetracarboxylate Ligand[J]. Dalton Trans., 2012,41:12790-12796. doi: 10.1039/c2dt31717f

    22. [22]

      Fan L M, Fan W L, Li B, Liu X Z, Zhao X, Zhang X T. Structural Diversities and Related Properties of Four Coordination Polymers Synthesized from Original Ligand of 3, 3', 5, 5'-Azobenzenetetracar-boxylic Acid[J]. Dalton Trans., 2015,44:2380-2389. doi: 10.1039/C4DT03076A

    23. [23]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent Functional Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    24. [24]

      Wu G, Feng J H, Wang X F. Synthesis, Crystal Structure, and Physical Properties of a Barium(Ⅱ) Benzene-1, 2, 3-tricarboxylic Acid Complex[J]. Z. Anorg. Allg. Chem., 2012,638(6):1047-1052. doi: 10.1002/zaac.201100532

    25. [25]

      Wang X F, Yu L, Wei H, Wu G. Synthesis, Crystal Structure, and Physical Properties of a Barium(Ⅱ) p-(Carboxy-l-methyloxy)-benzene-carboxylic Acid Complex[J]. Z. Anorg. Allg. Chem., 2011,637(2):289-292.

    26. [26]

      Al-Terkawi A, Scholz G, Emmerling F, Kemnitz E. Barium Coordination Polymers Based on Fluorinated and Fluorine-Free Benzene-Dicarboxylates: Mechanochemical Synthesis and Spectroscopic Characterization[J]. Solid State Sci., 2018,79:99-108. doi: 10.1016/j.solidstatesciences.2018.03.013

    27. [27]

      Wu G, Zhang S Q, Guo L. Synthesis, Structure, and Properties of a New Calcium(Ⅱ) Complex of 1, 10-Phenanthroline, 1, 2, 4, 5-Benzene-tetracarboxylic Acid, and a New Precursor to Produce Pure Phase Microcrystalline Calcite Particles[J]. Z. Anorg. Allg. Chem., 2013,639(5):804-809. doi: 10.1002/zaac.201200502

    28. [28]

      Thakuria R, Nath N K, Saha B K. The Nature and Applications of π-π Interactions: A Perspective[J]. Cryst. Growth Des., 2019,19(2):523-528. doi: 10.1021/acs.cgd.8b01630

    29. [29]

      Xu T, Mohr S, Amende M, Laurin M, Döpper T, Görling A, Libuda J. Benzoic Acid and Phthalic Acid on Atomically Well-Defined MgO (100) Thin Films: Adsorption, Interface Reaction, and Thin Film Growth[J]. J. Phys. Chem. C, 2015,119(48):26968-26979. doi: 10.1021/acs.jpcc.5b07591

    30. [30]

      Nyquist R A. Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra: Vol. 1. Elsevier, 2001: 205

    31. [31]

      Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 5th ed. Wiley, 1997: 59-62

    32. [32]

      Li Y L, Zhao Y, Wang P, Kang Y S, Liu Q, Zhang X D, Sun W Y. Multifunctional Metal-Organic Frameworks with Fluorescent Sensing and Selective Adsorption Properties[J]. Inorg. Chem., 2016,55(22):11821-11830. doi: 10.1021/acs.inorgchem.6b01869

    33. [33]

      Zheng X F, Zhou L, Huang Y M, Wang C G, Duan J G, Wen L L, Tian Z F, Li D F. A Series of Metal-Organic Frameworks Based on 5-(4-Pyridyl)-isophthalic Acid: Selective Sorption and Fluorescence Sensing[J]. J. Mater. Chem. A, 2014,2(31):12413-12422. doi: 10.1039/C4TA01900H

    34. [34]

      Xu Y, Tao C L, Yu M X, Xiong Y, Ouyang Y N, Liu X G, Zhao Z J. Tetraphenylethene-Based Luminescent Metal-Organic Framework for Effective Differentiation of cis/trans Isomers[J]. ACS Appl. Mater. Interfaces, 2020,12(31):35266-35272. doi: 10.1021/acsami.0c10702

    35. [35]

      Liu C Y, Chen X R, Chen H X, Niu Z, Hirao H, Braunstein P, Lang J P. Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration[J]. J. Am. Chem. Soc., 2020,142(14):6690-6697. doi: 10.1021/jacs.0c00368

    36. [36]

      Zhang H Y, Nie Y Z, Zhi X M, Du H F, Yang J. Controlled Ring-Opening Polymerization of α-Amino Acid N-Carboxy-anhydride by Frustrated Amine/Borane Lewis Pairs[J]. Chem. Commun., 2017,53(37):5155-5158. doi: 10.1039/C7CC01440F

    37. [37]

      Dadkhah M, Salavati-Niasari M, Davar F. A New Inorganic Framework in the Synthesis of Barium Carbonate Nanoparticles via Convenient Solid State Decomposition Route[J]. Adv. Powder Technol., 2013,24(1):14-20. doi: 10.1016/j.apt.2012.01.004

    38. [38]

      Tabatabaee M, Kukovec B M, Amjad S, Shishebor M R. Two Different Barium(Ⅱ) 2D Coordination Polymers Constructed with Pyrazine-2, 3-dicarboxylate: Synthesis, Crystal Structures, and Thermal Decomposition to Barium (Ⅱ) Carbonate Nanoparticles[J]. Aust. J. Chem., 2016,69(11):1261-1267. doi: 10.1071/CH16091

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    3. [3]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    6. [6]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    7. [7]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    8. [8]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    9. [9]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    12. [12]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    13. [13]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    14. [14]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    17. [17]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    18. [18]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    19. [19]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    20. [20]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

Metrics
  • PDF Downloads(2)
  • Abstract views(396)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return