Citation: Hao-Sen LIAO, Jun-Yi GAN, Xin XIA, Yong-Xu HU, Dong-Dong XIE, Dong-Yu ZHANG, Xiao LI. Synthesis of Fluorinated Diphenylbenzimidazole Iridium Complexes Based on Different Auxiliary Ligands and Solution-Processed Electroluminescent Devices[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 399-406. doi: 10.11862/CJIC.2022.052 shu

Synthesis of Fluorinated Diphenylbenzimidazole Iridium Complexes Based on Different Auxiliary Ligands and Solution-Processed Electroluminescent Devices

  • Corresponding author: Xiao LI, lixiao@ustl.edu.cn
  • Received Date: 13 September 2021
    Revised Date: 30 November 2021

Figures(6)

  • Nine benzimidazole-iridium(Ⅲ) complexes Ir-1a-Ir-3c were designed and synthesized by using fluorinated diphenylbenzimidazole derivatives as the main ligands and acetylacetone (corresponding complexes: Ir-1a-Ir-3a), 2-pyridine carboxylic acid (corresponding complexes: Ir-1b-Ir-3b), and 2-(5-trifluoromethyl-2H-[1,2,4]triazol-3-yl)-pyridine (tftp, corresponding complexes: Ir-1c-Ir-3c) as the auxiliary ligands, respectively. The effects of the degree of fluorination and different auxiliary ligands on the photophysical properties of the corresponding iridium complexes were investigated. The maximum emission wavelengths of the nine complexes were located in a range of 487-502 nm, showing green to blue-green phosphorescent emission. The largest blue shift was observed for the complexes based on tftp as an auxiliary ligand, especially for Ir-1c compared to Ir-1a with a blue shift of 17 nm. The nine complexes showed excellent photoluminescence efficiencies of 52%-87%. Furthermore, all iridium(Ⅲ) complexes exhibited good thermal stability, and the thermal decomposition temperatures were 313-390 ℃ (5% weight loss). Four iridium complexes of Ir-1c, Ir-2c, Ir-3c, and Ir-2b were selected for spin-coated electroluminescent devices with a doping concentration of 9%. The results show that the change of the primary and secondary ligands has a large effect on the luminescent color and luminescent efficiency of the light-emitting diodes. The Ir-3c-doped spin-coated devices had the highest device efficiency with an external quantum efficiency of 10.2%, a current efficiency of up to 30.3 cd·A-1, and a maximum power efficiency of 14.7 lm·W-1.
  • 加载中
    1. [1]

      HUANG W, MI B X, GAO Z Q. Organic Electronics. Beijing: Science Press, 2011: 267-268

    2. [2]

      Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature, 1998,395(6698):151-154. doi: 10.1038/25954

    3. [3]

      LI H Y, HUANG Y C, LI Z B, GUO H Q, YANG X, YANG T T, LU A D. Synthesis and Electroluminescence of a Red Iridium Complex[J]. Chinese J. Inorg. Chem., 2018,34(12):2211-2218. doi: 10.11862/CJIC.2018.238 

    4. [4]

      Ding L, Zang C X, Wen L L, Shan G G, Gao Y, Sun H Z, Xie W F, Su Z M. High-Performance and Stable Warm White OLEDs Based on Orange Iridium (Ⅲ) Phosphors Modified with Simple Alkyl Groups[J]. Organometallics, 2020,39(18):3384-3393. doi: 10.1021/acs.organomet.0c00472

    5. [5]

      Luo X F, Qu Z Z, Han H B, Su J, Yan Z P, Zhang X M, Tong J J, Zheng Y X, Zuo J L. Carbazole-Based Iridium(Ⅲ) Complexes for Electrophosphorescence with EQE of 32[J]. 2% and Low Efficiency Roll-Off. Adv. Opt. Mater., 2020,9(3)2001390.

    6. [6]

      Chen Z Q, Bian Z Q, Huang C H. Functional Ir Complexes and Their Application[J]. Adv. Mater., 2010,22(13):1534-1539. doi: 10.1002/adma.200903233

    7. [7]

      Chen S N, Gai X, Liang J, Ye K Q, Liu Y, Wang Y. Highly Efficient Phosphorescent Organic Light-Emitting Diodes Based on Novel Bipolar Iridium Complexes with Easily-Tuned Emission Colors by Adjusting Fluorine Substitution on Phenylpyridine Ligands[J]. J. Mater. Chem. C, 2021,9(26):8329-8336. doi: 10.1039/D1TC01498F

    8. [8]

      Hu Y X, Xia X, He W Z, Tang Z J, Lv Y L, Li X, Zhang D Y. Recent Developments in Benzothiazole-Based Iridium(Ⅲ) Complexes for Application in OLEDs as Electrophosphorescent Emitters[J]. Org. Electron., 2019,66:126-135. doi: 10.1016/j.orgel.2018.12.029

    9. [9]

      Rai V K, Nhshiura M, Takimoto M, Zhao S S, Liu Y, Hou Z M. Biscyclometalated Iridium(Ⅲ) Complexes Bearing Ancillary Guanidinate Ligands. Synthesis, Structure, and Highly Efficient Electroluminescence. Inorg.[J]. Inorg. Chem., 2012,51(2):822-835. doi: 10.1021/ic201217a

    10. [10]

      Monti F, Kessler F, Delgado M, Frey J, Bazzanini F, Accorsi G, Armaroli N, Bolink H J, Orti E, Scopelliti R, Nazeeruddin M K, Baranoff E. Charged Bis-cyclometalated Iridium(Ⅲ) Complexes with Carbene-Based Ancillary Ligands[J]. Inorg. Chem., 2013,52(18):10292-10305. doi: 10.1021/ic400600d

    11. [11]

      Sahin C, Goren A, Varlikli C. Synthesis, Characterization and Photophysical Properties of Iridium Complexes with Amidinate Ligands[J]. J. Organomet. Chem., 2014,772-773:68-78. doi: 10.1016/j.jorganchem.2014.08.031

    12. [12]

      Kang D M, Kang J W, Park J W, Jung S O, Lee S H, Park H D, Kim Y H, Shin S C, Kim J J, Kwon S K. Iridium Complexes with Cyclometalated 2-Cycloalkenyl-Pyridine Ligands as Highly Efficient Emitters for Organic Light-Emitting Diodes[J]. Adv. Mater., 2008,20(10):2003-2007. doi: 10.1002/adma.200702558

    13. [13]

      Xiao L X, Chen Z J, Qu B, Luo J X, Kong S, Gong Q H, Kido J J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices[J]. Adv. Mater., 2011,23(8):926-952. doi: 10.1002/adma.201003128

    14. [14]

      Chen X W, Liao J L, Liang Y M, Ahmed M O, Tseng H E, Chen S A. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety[J]. J. Am. Chem. Soc., 2003,125(3):636-637.

    15. [15]

      Lee S H, Kim S O, Shin H, Yun H J, Yang K, Kwon S K, Kim J J, Kim Y H. Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes[J]. J. Am. Chem. Soc., 2013,135(38):14321-14328.

    16. [16]

      Miao Y Q, Tao P, Gao Long, Li X L, Wei L W, Liu S J, Wang H, Xu B S, Zhao Q. Highly Efficient Chlorine Functionalized Blue Iridium(Ⅲ) Phosphors for Blue and White Phosphorescent Organic Light-Emitting Diodes with External Quantum Efficiency Exceeding 20%[J]. J. Mater. Chem. C, 2018,6(25):6656-6665.

    17. [17]

      Sun P, Wang K X, Zhao B, Yang T T, Xu H X, Miao Y Q, Wang H, Xu B S. Blue-Emitting Ir(Ⅲ) Complexes Using Fluorinated Bipyridyl as Main Ligand and 1, 2, 4-Triazol as Ancillary Ligand: Syntheses, Photophysical Properties and Performances in Devices[J]. Tetrahedron, 2016,72(50):8335-8341.

    18. [18]

      Mao H T, Zang C X, Wen L L, Shan G G, Sun H Z, Xie W F, Su Z M. Ir(Ⅲ) Phosphors Modified with Fluorine Atoms in Pyridine-1, 2, 4-triazolyl Ligands for Efficient OLEDs Possessing Low-Efficiency Roll-Off[J]. Organometallics, 2016,35(22):3870-3877.

    19. [19]

      Kang H J, Lee K H, Lee S J, Seo J H, Kim Y K, Yoon S S. Highly Efficient Red Phosphorescent OLEDs Based on Ir(Ⅲ) Complexes with Fluorine-Substituted Benzoylphenylpyridine Ligand[J]. Bull. Korean Chem. Soc., 2010,31(12):3711-3717.

    20. [20]

      Kessler F, Watanabe Y, Sasabe H, Katagiri H, Nazeeruddin M K, Gratzel M, Kido J J. High-Performance Pure Blue Phosphorescent OLED Using a Novel Bis-heteroleptic Iridium(Ⅲ) Complex with Fluorinated Bipyridyl Ligands[J]. J. Mater. Chem. C, 2013,1(6):1070-1075.

    21. [21]

      Kim J B, Han S H, Yang K, Kwon S K, Kim J J, Kim Y H. Highly Efficient Deep-Blue Phosphorescence from Heptafluoropropyl-Substituted Iridium Complexes[J]. Chem. Commun., 2015,51(1):58-61.

    22. [22]

      Xu H X, Wang F, Wang K X, Sun P, Li J, Yang T T, Wang H, Xu B S. Two Novel Bipolar Ir(Ⅲ) Complexes Based on 9-(4-(Pyridin-2-yl) phenyl)-9H-carbazole and N-Heterocyclic Ligand[J]. Dyes Pigm., 2017,146:316-322.

    23. [23]

      Zhao J H, Hu Y X, Dong Y, Xia X, Chi H J, Xiao G Y, Li X, Zhang D Y. Novel Bluish Green Benzimidazole-Based Iridium(Ⅲ) Complexes for Highly Efficient Phosphorescent Organic Light-Emitting Diodes[J]. New J. Chem., 2017,41(5):1973-1979.

    24. [24]

      LIU H M, ZHENG C J, HE J, ZHANG X H. High Efficient Solution Processed Small Molecular Phosphorescent Organic Light-Emitting Diodes[J]. Imaging Science and Photochemistry, 2008,26(1):8-15.  

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(8)
  • Abstract views(624)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return