Citation: Sheng CAI, Yuan-Zhen LIU, Chun-Qiong WANG, Xiao-Xiao ZOU, Zhi-Yuan MEI, Jing-Wen JIANG, Ting-Ting LIU, Hong GUO. Application of Carbon Nanofiber Supported Iron-Nickel Alloy in Zinc-Air Battery[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 415-422. doi: 10.11862/CJIC.2022.050 shu

Application of Carbon Nanofiber Supported Iron-Nickel Alloy in Zinc-Air Battery

Figures(5)

  • Oxygen evolution reaction (OER) catalysts play an important role in zinc-air batteries (ZABs). A novel non-noble metal-based self-supported carbon nanofiber (NiδFe4-δ-CNF) catalyst was developed. First, the network precursors were prepared from polyvinylpyrrolidone, transition metal acetate, and N, N-dimethylformamide via the electrostatic spinning method. After annealing at high temperature, the precursors were transformed into three-dimensional (3D) multi-pore structure material. The synthesized Ni1Fe1-CNF catalyst has a lower initial potential (230 mV) and overpotential (280 mV, 10 mA·cm-2) in electrolyte solution of 1 mol·L-1 KOH, and its performance is superior to that of commercial RuO2. Meanwhile, ZAB was assembled by mixing Ni1Fe1-CNF catalyst with commercial Pt/C catalyst as the air cathode. Compared with commercial RuO2+Pt/C ZAB, Ni1Fe1-CNF+Pt/C ZAB had a higher power density (122 mW·cm-2), lower charging voltage and better charge/discharge cycle stability.
  • 加载中
    1. [1]

      Li Y H, Li Q Y, Wang H Q, Zhang L, Wilkinson D P, Zhang J J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications[J]. Electrochem. Energy Rev., 2019,2(4):518-538. doi: 10.1007/s41918-019-00052-4

    2. [2]

      Mei Z Y, Cai S, Zhao G F, Zou X X, Fu Y, Jiang J W, An Q, Li M, Liu T T, Guo H. Boosting the ORR Active and Zn-Air Battery Performance through Ameliorating the Coordination Environment of Iron Phthalocyanine[J]. Chem. Eng. J., 2022,430132691. doi: 10.1016/j.cej.2021.132691

    3. [3]

      Xu K, Loh A, Wang B G, Li X H. Enhancement of Oxygen Transfer by Design Nickel Foam Electrode for Zinc-Air Battery[J]. J. Electrochem. Soc., 2018,165(5):A809-A818. doi: 10.1149/2.0361805jes

    4. [4]

      Zhao Z Q, Liu B, Fan X Y, Liu X R, Ding J, Hu W B, Zhong C. Meth-ods for Producing an Easily Assembled Zinc-Air Battery[J]. Methodsx, 2020,458(7)228061.

    5. [5]

      Hong W C, Li H, Wang B G. A Horizontal Three-Electrode Structure for Zinc-Air Batteries with Long-Term Cycle Life and High Performance[J]. Int. J. Electrochem. Sci., 2016,11(5):3843-3851.

    6. [6]

      Liu H X, Peng X Y, Liu X J, Qi G C, Luo J. Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range[J]. ChemSusChem, 2019,12(7):1270-1270. doi: 10.1002/cssc.201900796

    7. [7]

      Mi Y Y, Qiu Y, Liu Y F, Peng X N, Hu M, Zhao S Z, Cao H Q, Zhuo L C, Li H Y, Ren J Q, Liu X J, Luo J. Cobalt-Iron Oxide Nanosheets for High-Efficiency Solar-Driven CO2-H2O Coupling Electrocatalytic Reactions[J]. Adv. Funct. Mater., 2020,30(31)2003438. doi: 10.1002/adfm.202003438

    8. [8]

      Gao S S, Liu Y F, Xie Z Y, Qiu Y, Zhuo L C, Qin Y J, Ren J Q, Zhang S S, Hu G Z, Luo J, Liu X J. Metal-Free Bifunctional Ordered Mesoporous Carbon for Reversible Zn-CO2 Batteries[J]. Small Methods, 2021,5(4)2001039. doi: 10.1002/smtd.202001039

    9. [9]

      Liu H X, Liu X J, Mao Z Y, Zhao Z, Peng X Y, Luo J, Sun X M. Plasma-Activated Co3(PO4)2 Nanosheet Arrays with Co3+-Rich Surfaces for Overall Water Splitting[J]. J. Power Sources, 2018,400:190-197. doi: 10.1016/j.jpowsour.2018.08.028

    10. [10]

      Liu X J, Xi W, Li C, Li X B, Shi J, Shen Y L, He J, Zhang L H, Xie L, Sun X M, Wang P, Luo J, Liu L M, Ding Y. Nanoporous Zn-Doped Co3O4 Sheets with Single-Unit-Cell-Wide Lateral Surfaces for Efficient Oxygen Evolution and Water Splitting[J]. Nano Energy, 2018,44:371-377. doi: 10.1016/j.nanoen.2017.12.016

    11. [11]

      Cheng Y, Xu C W, Jia L C, Gale J D, Zhang L L, Liu C, Shen P K, Jiang S P. Pristine Carbon Nanotubes as Non-Metal Electrocatalysts for Oxygen Evolution Reaction of Water Splitting[J]. Appl. Catal. B, 2015,163:96-104. doi: 10.1016/j.apcatb.2014.07.049

    12. [12]

      Wang H T, Lee H W, Deng Y, Lu Z Y, Hsu P C, Liu Y Y, Lin D C, Cui Y. Bifunctional Non-Noble Metal Oxide Nanoparticle Electrocatalysts through Lithium-Induced Conversion for Overall Water Splitting[J]. Nat. Commun., 2015,67261. doi: 10.1038/ncomms8261

    13. [13]

      Zhang Y Q, Li M, Hua B, Wang Y, Sun Y F, Luo J L. A Strongly Cooperative Spinel Nanohybrid as an Efficient Bifunctional Oxygen Electrocatalyst for Oxygen Reduction Reaction and Oxygen Evolution Reaction[J]. Appl. Catal. B, 2018,236:413-419. doi: 10.1016/j.apcatb.2018.05.047

    14. [14]

      Wu M C, Guo B K, Nie A M, Liu R. Tailored Architectures of FeNi Alloy Embedded in N-Doped Carbon as Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Battery[J]. J. Colloid Interface Sci., 2020,561:585-592. doi: 10.1016/j.jcis.2019.11.033

    15. [15]

      Ma Y D, Dai X P, Liu M Z, Yong J X, Qiao H Y, Jin A X, Li Z Z, Huang X L, Wang H, Zhang X. Strongly Coupled FeNi Alloys/NiFe2O4@Carbonitride Layers-Assembled Microboxes for Enhanced Oxygen Evolution Reaction[J]. ACS Appl. Mater. Interfaces, 2016,8(50):34396-34404. doi: 10.1021/acsami.6b11821

    16. [16]

      He D P, Tang H L, Kou Z K, Pan M, Sun X L, Zhang J J, Mu S C. Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells[J]. Adv. Mater., 2017,29(20)1601741. doi: 10.1002/adma.201601741

    17. [17]

      Liu T T, Cai S, Gao Z H, Liu S M, Li H N, Chen L J, Li M, Guo H. Facile Synthesis of the Porous FeCo@Nitrogen-Doped Carbon Nanosheets as Bifunctional Oxygen Electrocatalysts[J]. Electrochim. Acta, 2020,335135647. doi: 10.1016/j.electacta.2020.135647

    18. [18]

      Zhang R Z, Zhang C M, Chen W. FeP Embedded in N, P Dual-Doped Porous Carbon Nanosheets: An Efficient and Durable Bifunctional Catalyst for Oxygen Reduction and Evolution Reactions[J]. J. Mater. Chem. A, 2016,4(48):18723-18729. doi: 10.1039/C6TA08363C

    19. [19]

      Zhao L, Sui X L, Li J Z, Zhang J J, Zhang L M, Huang G S, Wang Z B. Supramolecular Assembly Promoted Synthesis of Three-Dimensional Nitrogen Doped Graphene Frameworks as Efficient Electrocatalyst for Oxygen Reduction Reaction and Methanol Electrooxidation[J]. Appl. Catal. B, 2018,231:224-233. doi: 10.1016/j.apcatb.2018.03.020

    20. [20]

      Zhao L, Sui X L, Zhou Q Y, Li J Z, Zhang J J, Huang G S, Wang Z B. 1D N-Doped Hierarchically Porous Hollow Carbon Tubes Derived from a Supramolecular Template as Metal-Free Electrocatalysts for a Highly Efficient Oxygen Reduction Reaction[J]. J. Mater. Chem. A, 2018,6(15):6212-6219. doi: 10.1039/C8TA01296B

    21. [21]

      Liu S M, Chen L J, Liu T T, Cai S, Zou X X, Jiang J W, Mei Z Y, Gao Z H, Guo H, Rich S. Vacant g-C3N4@CuIn5S8 Hollow Heterojunction for Highly Efficient Selective Photocatalytic CO2 Reduction[J]. Chem. Eng. J., 2021,424130325. doi: 10.1016/j.cej.2021.130325

    22. [22]

      Dong F, Liu C, Wu M J, Guo J N, Lo K X, Qiao J L. Hierarchical Porous Carbon Derived from Coal Tar Pitch Containing Discrete Co-Nx-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries[J]. ACS Sustainable Chem. Eng., 2019,7(9):8587-8596. doi: 10.1021/acssuschemeng.9b00373

    23. [23]

      Liu C, Dong F, Wu M J, Wang Y X, Xu N N, Wang X, Qiao J L, Shi P H, Huang H T. Dual-Active-Sites Design of CoSx Anchored on Nitrogen-Doped Carbon with Tunable Mesopore Enables Efficient Bi-functional Oxygen Catalysis for Ultra-Stable Zinc-Air Batteries[J]. J. Power Sources, 2019,438226953. doi: 10.1016/j.jpowsour.2019.226953

    24. [24]

      Zhu C Z, Li H, Fu S F, Du D, Lin Y H. Highly Efficient Nonprecious Metal Catalysts towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures[J]. Chem. Soc. Rev., 2016,45(3):517-531. doi: 10.1039/C5CS00670H

    25. [25]

      Liu B, Yang M, Chen H B, Liu Y J, Yang D G, Li H M. Graphenelike Porous Carbon Nanosheets Derived from Salvia Splendens for High-Rate Performance Supercapacitors[J]. J. Power Sources, 2018,397:1-10. doi: 10.1016/j.jpowsour.2018.06.100

    26. [26]

      Li Y J, Wang G L, Wei T, Fan Z J, Yan P. Nitrogen and Sulfur Codoped Porous Carbon Nanosheets Derived from Willow Catkin for Supercapacitors[J]. Nano Energy, 2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038

    27. [27]

      Liu T T, Li M, Bo X J, Zhou M. Designing Iron Carbide Embedded Isolated Boron (B) and Nitrogen (N) Atoms Co-doped Porous Carbon Fibers Networks with Tiny Amount of BN Bonds as High-Efficiency Oxygen Reduction Reaction Catalysts[J]. J. Colloid Interface Sci., 2019,533:709-722. doi: 10.1016/j.jcis.2018.08.087

    28. [28]

      Hou J H, Cao C B, Idrees F, Ma X L. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors[J]. ACS Nano, 2015,9(3):2556-2564. doi: 10.1021/nn506394r

    29. [29]

      Yun Y S, Park M H, Hong S J, Lee M E, Park Y W, Jin H J. Hierar-chically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors[J]. ACS Appl. Mater. Interfaces, 2015,7(6):3684-3690. doi: 10.1021/am5081919

    30. [30]

      Wu M, Zhang G, Hu Y, Wang J, Sun S. Graphitic-Shell Encapsulated FeNi Alloy/Nitride Nanocrystals on Biomass-Derived N-Doped Carbon as an Efficient Electrocatalyst for Rechargeable Zn-Air Bat-tery[J]. Carbon Energy, 2020,3:176-187.

    31. [31]

      Shang P, Zhang J A, Tang W Y, Xu Q, Guo S J. 2D Thin Nanoflakes Assembled on Mesoporous Carbon Nanorods for Enhancing Electrocatalysis and for Improving Asymmetric Supercapacitors[J]. Adv. Funct. Mater., 2016,26(43):7766-7774. doi: 10.1002/adfm.201603504

    32. [32]

      Zhu D D, Wang Y D, Yuan G L, Xia H. High-Performance Supercapacitor Electrodes Based on Hierarchical Ti@MnO2 Nanowire Arrays[J]. Chem. Commun., 2014,50(22):2876-2878. doi: 10.1039/C3CC49800J

    33. [33]

      Yadav D, Amini F, Ehrmann A. Recent Advances in Carbon Nanofibers and Their Applications-A Review[J]. Eur. Polym. J., 2020,13814.

    34. [34]

      Li M, Liu Y, Han L N, Xiao J, Zeng X Y, Zhang C X, Xu M L, Dong P, Zhang Y J. A Novel Strategy for Realizing High Nitrogen Doping in Fe3C-Embedded Nitrogen and Phosphorus-Co-doped Porous Carbon Nanowires: Efficient Oxygen Reduction Reaction Catalysis in Acidic Electrolytes[J]. J. Mater. Chem. A, 2019,7(30):17923-17936. doi: 10.1039/C9TA04388H

    35. [35]

      Li M A, Liu T T, Bo X J, Zhou M, Guo L P, Guo S J. Hybrid Carbon Nanowire Networks with Fe—P Bond Active Site for Efficient Oxygen/Hydrogen-Based Electrocatalysis[J]. Nano Energy, 2017,33:221-228. doi: 10.1016/j.nanoen.2017.01.026

    36. [36]

      Luo Y, Wang Z J, Fu Y, Jin C, Wei Q, Yang R Z. In Situ Preparation of Hollow Mo2C-C Hybrid Microspheres as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions[J]. J. Mater. Chem. A, 2016,4(32):12583-12590. doi: 10.1039/C6TA04654A

    37. [37]

      He B, Xu C Y, Tang Y W, Qian Y, Liu H K, Hao Q L, Su Z. Facile Fabrication of a Hierarchical NiCoFeP Hollow Nanoprism for Efficient Oxygen Evolution in the Zn-Air Battery[J]. J. Mater. Chem. A, 2019,7(43):24964-24972. doi: 10.1039/C9TA09239K

    38. [38]

      Mo R, Wang S, Li H X, Li J, Yang S, Zhong J X. Graphene Layers-Wrapped FeNiP Nanoparticles Embedded in Nitrogen-Doped Carbon Nanofiber as an Active and Durable Electrocatalyst for Oxygen Evolution Reaction[J]. Electrochim. Acta, 2018,290:649-656. doi: 10.1016/j.electacta.2018.08.118

    39. [39]

      Feng C, Guo Y, Xie Y H, Cao X L, Li S, Zhang L G, Wang W, Wang J D. Bamboo-like Nitrogen-Doped Porous Carbon Nanofibers Encapsulated Nickel-Cobalt Alloy Nanoparticles Composite Material Derived from the Electrospun Fiber of a Bimetal-Organic Framework as Efficient Bifunctional Oxygen Electrocatalysts[J]. Nanoscale, 2020,12(10):5942-5952. doi: 10.1039/C9NR10943A

    40. [40]

      Lai C L, Fang J Y, Liu X P, Gong M X, Zhao T H, Shen T, Wang K L, Jiang K, Wang D L. In Situ Coupling of NiFe Nanoparticles with N-Doped Carbon Nanofibers for Zn-Air Batteries Driven Water Splitting[J]. Appl. Catal. B, 2021,285119856. doi: 10.1016/j.apcatb.2020.119856

    41. [41]

      Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Highly Active Hydrogen Evolution Catalysis from Metallic WS2 Nanosheets[J]. Energy Environ. Sci., 2014,7(8):2608-2613. doi: 10.1039/C4EE01329H

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(1)
  • Abstract views(447)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return