Citation: Tong-Sheng YANG, Renagul ABDURAHMAN, Qian-Ting YANG, Xue-Feng SUN, Gang-Hui CHU. Preparation and Optical Properties of Size Controllable Near-Infrared Emitting Zn1.4Ga1.97-2xO4∶1.5%Cr, xIn Persistent Luminescent Nanoparticles[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 449-458. doi: 10.11862/CJIC.2022.049 shu

Preparation and Optical Properties of Size Controllable Near-Infrared Emitting Zn1.4Ga1.97-2xO4∶1.5%Cr, xIn Persistent Luminescent Nanoparticles

Figures(8)

  • Size controllable near infrared-emitting ZGO∶1.5%Cr, xIn (Zn1.4Ga1.97-2xO4∶1.5%Cr, xIn, x=0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%) persistent luminescent nanoparticles (PLNPs) were prepared via a facile one-step hydrothermal method. The size and persistent luminescence properties of ZGO∶1.5%Cr, xIn PLNPs depended on codoping amounts of In3+.The results showed that when the doping amount of In3+ was 0.2%, the average particle size of ZGO∶1.5%Cr, xIn PLNPs was the smallest (13.79 nm), and the NIR luminescence was the strongest. The afterglow time was estimated for 5 d, and can be re-excited by LED lamp. ZGO∶1.5%Cr, xIn PLNPs were pure spinel structure, and the doping of In3+ did not affect the crystal structure of PLNPs.
  • 加载中
    1. [1]

      Li X, Zhang H B, Zhang C Y, Huang C, Wei J. Time-Dependent Pho-toluminescence Patterns Based on Cr3+-Doped and Co-doped Zn3Ga2Ge2O10[J]. J. Photochem. Photobiol. A, 2021,418113403. doi: 10.1016/j.jphotochem.2021.113403

    2. [2]

      Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Chemically Engineered Persis-tent Luminescence Nanoprobes for Bioimaging[J]. Theranostics, 2016,6(13):2488-2524. doi: 10.7150/thno.16589

    3. [3]

      LIU W G, ABDURAHMAN R, AIWAILI R. Research Progress in Modification of Long afterglow Nanoparticles[J]. Micronanoelectronic Technology, 2021,58(11):976-984.  

    4. [4]

      YANG Q T, ABDURAHMAN R, YAN Y, MAIMAITYIMIN G. Appli-cation of Cr3+ Doped Long Afterglow Luminescent Nanoparticles in Biomedical Research[J]. Laser & Optoelectronics Progress, 2021,58(8)0800003.

    5. [5]

      Pei P, Chen Y, Sun C X, Fan Y, Yang Y M, Liu X, Lu L F, Zhao M Y, Zhang H X, Zhao D Y, Liu X G, Zhang F. X-ray-Activated Persistent Luminescence Nanomaterials for NIR-Ⅱ Imaging[J]. Nat. Nanotechnol., 2021,16:1011-1018. doi: 10.1038/s41565-021-00922-3

    6. [6]

      Li Y J, Yan X P. Synthesis of Functionalized Triple-Doped Zinc Gallo-germanate Nanoparticles with Superlong Near-Infrared Persistent Luminescence for Long-Term Orally Administrated Bioimaging[J]. Nanoscale, 2016,8(32):14965-14970. doi: 10.1039/C6NR04950H

    7. [7]

      Abdurahman R, Yang C X, Yan X P. Conjugation of a Photosensitizer to Near Nnfrared Light Renewable Persistent Luminescence Nanopar-ticles for Photodynamic Therapy[J]. Chem. Commun., 2016,52(90):13303-13306. doi: 10.1039/C6CC07616E

    8. [8]

      Wei X J, Huang X D, Zeng Y, Jing L H, Tang W, Li X N, Ning H R, Sun X D, Yi Y P, Gao M Y. Longer and Stronger: Improving Persistent Luminescence in Size-Tuned Zinc Gallate Nanoparticles by Alcohol-Mediated Chromium Doping[J]. ACS Nano, 2020,14(9):12113-12124. doi: 10.1021/acsnano.0c05655

    9. [9]

      Gong Z, Liu Y X, Yang J, Yan D T, Zhu H C, Liu C G, Xu C S, Zhang H. A Pr3+ Doping Strategy for Simultaneously Optimizing the Size and Near Infrared Persistent Luminescence of ZGGO: Cr3+ Nanoparticles for Potential Bio-Imaging[J]. Phys. Chem. Chem. Phys., 2017,19(36):24513-24521. doi: 10.1039/C7CP02909H

    10. [10]

      ABDUKEUMU A, TURDI A, ABDURAHMAN R, TURSON M, NURMAITI N. Preparation and Luminescence Properties of Dy, Cr Co-doped ZnGa2O4 Long Afterglow Nanoparticles[J]. J. Inorg. Mater., 2016,31(12):1363-1369.

    11. [11]

      Verma S, Chand J, Singh M. Effect of In3+ Ions Doping on the Struc-tural and Magnetic Properties of Mg0.2Mn0.5Ni0.3InxFe2xO4 Spinel Fer-rites[J]. J. Magn. Magn. Mater., 2012,324(20):3252-3260. doi: 10.1016/j.jmmm.2012.04.053

    12. [12]

      Patel D K, Girija K G, Naidu B S, Vishwanadhd B, Sayede F N, Vatsaa R K, Sudarsana V, Kulshreshtha S K. In3+ Doped ZnGa2O4 Nanoparticles: Difference in the Luminescence Properties upon Opti-cal and Electrical Excitations[J]. J. Alloys Compd., 2021,884161021. doi: 10.1016/j.jallcom.2021.161021

    13. [13]

      Kolekar C B, Kamble P N, Vaingankar A S. Structural and Dc Elec-trical Resistivity Study of Gd3+-Substituted Cu-Cd Mixed Ferrites[J]. J. Magn. Magn. Mater., 1994,138:211-215. doi: 10.1016/0304-8853(94)90418-9

    14. [14]

      Sen S K, Paul T C, Dutta S, Hossain M N, Mia M N H. XRD Peak Profle and Optical Properties Analysis of Ag-Doped h-MoO3 Nanorods Synthesized via Hydrothermal Method[J]. J. Mater. Sci. Mater. Electron., 2020,31(2):1768-1786. doi: 10.1007/s10854-019-02694-y

    15. [15]

      Allix M, Chenu S, Véron E, Poumeyrol T, Kouadri-Boudjelthia E A, Alahraché S, Porcher F, Massiot D, Fayon F. Considerable Improve- ment of Long-Persistent Luminescence in Germanium and Tin Sub-stituted ZnGa2O4[J]. Chem. Mater., 2013,25(9):1600-1606. doi: 10.1021/cm304101n

    16. [16]

      Abdukayum A, Yang C X, Zhao Q, Chen J T, Dong L X, Yan X P. Gadolinium Complexes Functionalized Persistent Luminescent Nanoparticles as a Multimodal Probe for Near-Infrared Lumines-cence and Magnetic Resonance Imaging In Vivo[J]. Anal. Chem., 2014,86(9):4096-4101. doi: 10.1021/ac500644x

    17. [17]

      Jiang R Y, Yang J, Meng Y Q, Yan D T, Liu C G, Xu C S, Liu Y X. X-ray/Red-Light Excited ZGGO: Cr, Nd Nanoprobes for NIR-Ⅰ/Ⅱ Afterglow Imaging[J]. Dalton Trans., 2020,49(18):6074-6083. doi: 10.1039/D0DT00247J

    18. [18]

      Gao Y F, Zou R, Chen G F, Liu B M, Zhang Y, Jiao J, Wong K L, Wang J. Large-Pore Mesoporous-Silica-Assisted Synthesis of High-Performance ZnGa2O4∶Cr3+/Sn4+ @MSNs Multifunctional Nanoplat-form with Optimized Optical Probe Mass Ratio and Superior Residu-al Pore Volume for Improved Bioimaging and Drug Delivery[J]. Chem. Eng. J., 2021,420:130021-130122. doi: 10.1016/j.cej.2021.130021

    19. [19]

      Srivastava B B, Gupta S K, Mohan S, Mao Y. Molten Salt Assisted Annealing for Making Colloidal ZnGa2O4∶Cr Nanocrystals with High Persistent Luminescence[J]. Chem. Eur. J., 2021,27:11398-11405. doi: 10.1002/chem.202101234

    20. [20]

      Kumari P, Mondal A, Choudhary A K, Ambast D S K. Structural and Optical Properties of Chromium Doped Zinc Gallate Long Persistent Phosphor Prepared by Surfactant Assisted Hydrothermal Method[J]. J. Phys. Conf. Ser., 2021,1913(1)012039. doi: 10.1088/1742-6596/1913/1/012039

    21. [21]

      SUN L L, YANTAK R, WANG Q L, HE J Y, STILKE A. Lumines-cence Properties and Energy Transfer of Er3+, Cr3+ Co-Doped BaAl2Si2O8 Phosphors[J]. Acta Photonica Sinica, 2020,49(3):123-129.  

    22. [22]

      Dai W J, Chi F F, Lou B B, Wei X T, Cheng J, Liu S L, Yin M. Temperature-Dependent Luminescent Properties of Cr3+ Doped ZnGa2O4 Far-Red Emitting Phosphor[J]. Opt. Mater., 2021,116:111104-111111. doi: 10.1016/j.optmat.2021.111104

    23. [23]

      Zhu Q, Xiahou J Q, Guo Y, Li H L, Ding C, Wang J, Li X D, Sun X D, Li J G. Zn3Ga2Ge2O10: Cr3+ Uniform Microspheres: Template-Free Synthesis, Tunable Bandgap/Trap-Depth, and In Vivo Rechargeable Near-Infrared Persistent Luminescence[J]. ACS Appl. Bio Mater., 2019,2:577-587.  

    24. [24]

      Li Y, Gecevicius M, Qiu J R. Long Persistent Phosphors—From Fun-damentals to Applications[J]. Chem. Soc. Rev., 2016,45(8):2090-2136. doi: 10.1039/C5CS00582E

    25. [25]

      Zhao B Q, Zhu Q, Sun X D, Li J G. Co-Doping Zn2+/Sn4+ in ZnGa2O4∶ Cr3+ for Dynamic Near-Infrared Luminescence and Advanced Anti-Counterfeiting[J]. Ceram. Int., 2021,47(12):17000-17007. doi: 10.1016/j.ceramint.2021.02.271

    26. [26]

      Hu Z F, Ye D H, Lan X J, Zhang W, Luo L, Wang Y H. Influence of Co-Doping Si Ions on Persistent Luminescence of ZnGa2O4∶Cr3+ Red Phosphors[J]. Opt. Mater. Express., 2016,6(4):1329-1338. doi: 10.1364/OME.6.001329

    27. [27]

      Pan Z, Lu Y Y, Liu F. Sunlight-Activated Long-Persistent Lumines-cence in the Near-Infrared from Cr3+-Doped Zinc Gallogermanates[J]. Nat. Mater., 2011,11(1):58-63.

    28. [28]

      LIU W, CUI R R, DENG C Y. Preparation and Luminescence Prop-erties of Zn3Ga 4GexO9+2x∶1%Cr3+ as a Novel NIR Ultra-Long After-glow Material[J]. Journal of Optoelectronics·Laser, 2016,27(2):150-155.

    29. [29]

      JIAO D, XIAO S G. Luminescence and Long Afterglow Properties of In3+, Si4+ Co-doped ZnBi0.02Ga1.98O4∶Cr3+[J]. Spectroscopy and Spectral Analysis, 2020,40(12):3716-3721.

    30. [30]

      ABDURAHMAN R, YANG T S, LIU W G, YAN Y. Preparation and Optical Properties of Zn(1+x)Ga(2-0.01 -y)GexO(3x+4)∶ 0.01Cr, yBi Long Afterglow Nanoparticles[J]. Laser & Optoelectronics Progress, 2021,58(21)2116001.  

    31. [31]

      Tuerdi A, Abdukayum A. Dual-Functional Persistent Luminescent Nanoparticles with Enhanced Persistent Luminescence and Photo-catalytic Activity[J]. RSC Adv., 2019,9(31):17653-17657. doi: 10.1039/C9RA02235J

    32. [32]

      Que M D, Que W X, Zhou T, Shao J Y, Kong L B. Enhanced Photolu-minescence Property of Sulfate Ions Modified YAG∶Ce3+ Phosphor by Co-precipitation Method[J]. J. Rare Earths, 2017,35(3):217-222. doi: 10.1016/S1002-0721(17)60902-5

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(398)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return