Citation: Zhong-Zheng MIAO. Theoretical Study on Condition Control and Photoelectric Properties of Graphene Adsorbing TiCl4 Molecule[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 528-534. doi: 10.11862/CJIC.2022.048 shu

Theoretical Study on Condition Control and Photoelectric Properties of Graphene Adsorbing TiCl4 Molecule

  • Corresponding author: Zhong-Zheng MIAO, mzz0415@126.com
  • Received Date: 19 November 2021
    Revised Date: 2 January 2022

Figures(4)

  • To study the influencing factors and photoelectric properties of graphene adsorbed by TiCl4 molecules, and explore the possibility of the composite applied to sensors and transparent conductive films, first-principles calculations and Monte Carlo methods were carried out to study the adsorption performance and photoelectric properties of TiCl4 gas molecules on the surface of graphene. The results reveal that: (1) graphene has a strong physical adsorption effect on TiCl4 gas molecules. Cl atoms, sitting at the top of carbon atoms farthest from the center of mass is the most stable configuration. (2) The increase in temperature is not conducive to the adsorption of TiCl4 gas molecules, but the increase of gas fugacity is conducive. The temperature should be maintained near the boiling point of TiCl4 and the pressure of the gas be increased when TiCl4 gas molecules are inserted into graphite/double-layer graphene/multilayer graphene. (3) The adsorption of TiCl4 regulates the electronic structure of graphene, significantly improves the density of states near the Fermi level, reduces the pseudo-energy gap, and effectively improves the conductivity. (4) In the visible region, the adsorption of TiCl4 has little effect on the absorption performance of the system, and does not affect the optical properties of the transparent conductive film while improving the conductivity of the film.
  • 加载中
    1. [1]

      Dresselhaus M S, Dresselhaus G. Intercalation Compounds of Graphite[J]. Adv. Phys., 2002,51(1):1-186. doi: 10.1080/00018730110113644

    2. [2]

      Hwang T, Cho M, Cho K. Interlayer Design of Pillared Graphite by Na-Halide Cluster Intercalation for Anode Materials of Sodium-Ion Batteries[J]. ACS Omega, 2021,6(14):9492-9499. doi: 10.1021/acsomega.0c06199

    3. [3]

      Li X J, Lei Y, Qin L, Han D, Wang H W, Zhai D Y, Li B H, Kang F Y. Mildly-Expanded Graphite with Adjustable Interlayer Distance as High-Performance Anode for Potassium-Ion Batteries[J]. Carbon, 2021,172(4):200-206.

    4. [4]

      Geng X M, Guo Y F, Li D F, Li W W, Zhu C, Wei X F, Chen M L, Gao S, Qiu S Q, Gong Y P, Wu L Q, Long M S, Pan G B, Liu L W. Interlayer Catalytic Exfoliation Realizing Scalable Production of Large-Size Pristine Few-Layer Graphene[J]. Sci. Rep., 2013,3(1)1134. doi: 10.1038/srep01134

    5. [5]

      Miao Z Z, Li X L, Zhang X H, Zhou M, Ning J, Miao L X, Qiu X Y, Jin M H, Zhi L J. Reversible Functionalization: A Scalable Way to Deliver the Structure and Interface of Graphene for Different Macro Applications[J]. Adv. Mater. Interfaces, 2016,31500842. doi: 10.1002/admi.201500842

    6. [6]

      Fu W J, Jim K, Steven H O, Schwartz V, Liang C D. Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound[J]. Chem. Commun., 2011,47:5265-5267. doi: 10.1039/c1cc10508f

    7. [7]

      Smith R P, Weller T E, Howard C A, Dean M, Rahnejat K, Saxena S, Ellerby M. Superconductivity in Graphite Intercalation Compounds[J]. Physica C, 2015,514(15):50-58.

    8. [8]

      Dominique J W, Thomas H B, Tim B, Bøggild P, Craciun M, Russo S. Unforeseen High Temperature and Humidity Stability of FeCl3 Intercalated Few Layer Graphene[J]. Sci. Rep., 2015,57609. doi: 10.1038/srep07609

    9. [9]

      Zhao W J, Tan P H, Zhang J, Liu J. Charge Transfer and Optical Phonon Mixing in Few-Layer Graphene Chemically Doped with Sulfuric Acid[J]. J. Phys. Rev. B, 2010,82245423. doi: 10.1103/PhysRevB.82.245423

    10. [10]

      Miao Z Z, Li X L, Zhi L J. Controlled Functionalization of Graphene with Carboxyl Moieties toward Multiple Applications[J]. RSC Adv., 2016,6:58561-58565. doi: 10.1039/C6RA12470D

    11. [11]

      Zhou W C, Patrick S H L. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications[J]. ACS Omega, 2020,5(29):18289-18300. doi: 10.1021/acsomega.0c01950

    12. [12]

      Xu Qi, Wang Q W, Chen D Q, Zhong Y J, Wu Z, Song Y, Wang G K, Liu Y X, Zhong B H, Guo X D. Silicon/Graphite Composite Anode with Constrained Swelling and a Stable Solid Electrolyte Interphase Enabled by Spent Graphite[J]. Green Chem., 2021,23:4531-4539. doi: 10.1039/D1GC00630D

    13. [13]

      Raya S S, Ansari A S, Shong B. Adsorption of Gas Molecules on Graphene, Silicene, and Germanene: A Comparative First-Principles Study[J]. Surf. Interfaces, 2021,24101054. doi: 10.1016/j.surfin.2021.101054

    14. [14]

      WANG Y R, WANG L F, YUAN D Y, KOMG Y Y, MA S H. Adsorption of Molecular H2S on Monolayer Ti2CO2: A First-Principles Study[J]. Chinese Journal of Atomic and Molecular Physics, 2019,36(4):568-573. doi: 10.3969/j.issn.1000-0364.2019.04.007

    15. [15]

      Huang B, Li Z Y, Liu Z R, Zhou G, Hao S G, Wu J, Gu B L, Duan W H. Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nano-Scale Molecule Sensor[J]. J. Phys. Chem. C, 2008,112(35):13442-13446. doi: 10.1021/jp8021024

    16. [16]

      Kemp K C, Humaira S, Muhammad S, Le N H, Mahesh K, Chandra V, Kim K S. Environmental Applications Using Graphene Composites: Water Remediation and Gas Adsorption[J]. Nanoscale, 2013,5:3149-3171. doi: 10.1039/c3nr33708a

    17. [17]

      Holzwarth N A W, Louie S G, Rabii S. Interlayer States in Graphite and in Alkali-Metal-Graphite Intercalation Compounds[J]. Phys. Rev. B, 1984,30(4):2219-2222. doi: 10.1103/PhysRevB.30.2219

    18. [18]

      Zhang C Z, Ma J M, Han F, Liu H B, Zhang F Q, Fan C L, Liu J S, Li X K. Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation Compounds (FeCl3-Gics) with Tailored Epoxy Groups for High-Capacity and Stable Lithium Storage[J]. J. Mater. Chem. A, 2018,6:17982-17993. doi: 10.1039/C8TA06670A

    19. [19]

      Zhao W J, Tan P H, Liu J, Ferrari A. Intercalation of Few-Layer Graphite Flakes with FeCl3: Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability[J]. J. Am. Chem. Soc., 2011,133(15):5941-5946. doi: 10.1021/ja110939a

    20. [20]

      Li W B, Lin S Y, Tran N N N, Lin M F, Lin K I. Essential Geometric and Electronic Properties in Stage-N Graphite Alkali-Metal-Intercalation Compounds[J]. RSC Adv., 2020,10(40):23573-23581. doi: 10.1039/D0RA00639D

    21. [21]

      Yoji I, Akio W. Energetic Evaluation of Possible Stacking Structures of Li-Intercalation in Graphite Using a First-Principle Pseudopotential Calculation[J]. J. Alloys Compd., 2007,439(1/2):258-267.

    22. [22]

      Zhan D, Sun L, Ni Z H, Liu L, Fan X F, Wang Y Y, Yu T, Lam Y M, Huang W, Shen Z X. FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping[J]. Adv. Funct. Mater., 2010,20(20):3504-3509. doi: 10.1002/adfm.201000641

    23. [23]

      Zhang M J, Wu X J, Yang G, Qian N, Wei F, Zhao C, Liu J Y, Deng K, Liu W. Tritium Adsorption and Desorption on/from Nuclear Graphite Edge by a First-Principles Study[J]. Carbon, 2021,173:676-686. doi: 10.1016/j.carbon.2020.11.014

    24. [24]

      Guo J J, Zhu S M, Chen Z X, Li Y, Yu Z, Liu Q L, Li J B, Feng C, Zhang D. Sonochemical Synthesis of TiO2 Nanoparticles on Graphene for Use as Photocatalyst[J]. Ultrason. Sonochem., 2011,18(5):1082-1090. doi: 10.1016/j.ultsonch.2011.03.021

    25. [25]

      Sahithi A, Sumithra K. New Insights in the Electronic Structure of Doped Graphene on Adsorption with Oxides of Nitrogen[J]. Mater. Today Commun., 2021,27102417. doi: 10.1016/j.mtcomm.2021.102417

    26. [26]

      Xia K S, Tian X L, Fei S X, You K. Hierarchical Porous Graphene-Based Carbons Prepared by Carbon Dioxide Activation and Their Gas Adsorption Properties[J]. Int. J. Hydrogen Energy, 2014,39(21):11047-11054. doi: 10.1016/j.ijhydene.2014.05.059

    27. [27]

      Yan W Q, Liu Y M, Shao G F, Zhu K M, Cui S, Wang W, Shen X D. Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels[J]. ACS Appl. Mater. Interfaces, 2021,13(17):20467-20478. doi: 10.1021/acsami.1c00302

    28. [28]

      JIANG Y F, WU H Y, CHU X F, LIANG S M, ZHANG J, GAO Q, WANG Y. Preparation and Gas Sensing Properties of Graphene/SnO2 by Solvothermal Method[J]. Chinese J. Inorg. Chem., 2019,35(7):1163-1168.  

    29. [29]

      Zhao Y J, Chen Y H, Xu W H, Zhang M L, Zhang C R. First Principles Study on Methane Adsorption Performance of Ti-Modified Porous Graphene[J]. Phys. Status Solidi B, 2021,258(11)2100168. doi: 10.1002/pssb.202100168

    30. [30]

      De ji, Kaur N, Choudhary B C, Sharma R K. Carbon-Dioxide Gas Sensor Using Co-doped Graphene Nanoribbon: A First Principle DFT Study[J]. Mater. Today: Proc., 2021,45(6):5023-5028.

    31. [31]

      Crowther A C, Ghassaei A, Jung N, Louis E B. Strong Charge-Transfer Doping of 1 to 10 Layer Graphene by NO2[J]. ACS Nano, 2012,6(2):1865-1875. doi: 10.1021/nn300252a

    32. [32]

      Pham T, Forrest K, Hogan A, Mclaughlin K, Belof J, Eckert J, Space B. Simulations of Hydrogen Sorption in rht-MOF-1: Identifying the Binding Sites through Explicit Polarization and Quantum Rotation Calculations[J]. J. Mater. Chem. A, 2014,2:2088-2100. doi: 10.1039/C3TA14591C

    33. [33]

      YUAN W H, BI S H, CAO M S. Formaldehyde Molecule Adsorbed on Graphene: A First-Principles Study[J]. Materials Review, 2015,29(18):156-159.  

    34. [34]

      Barrios V, José E, Naumis G. Pseudo-Gap Opening and Dirac Point Confined States in Doped Graphene[J]. Solid State Commun., 2013,162:23-27. doi: 10.1016/j.ssc.2013.03.006

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(4)
  • Abstract views(617)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return