Citation: Chang-Wei DANG, Yong-Wei ZHANG, Feng HAN, Jiao-E DANG, Zhuo-Lei LIU, Yin-Hao WANG, Ying-Ying DENG, Si-Ning YUN. Chemical Co-precipitation Preparation of ZnMoO4/Aloe-Derived Porous Carbon and Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 489-500. doi: 10.11862/CJIC.2022.046 shu

Chemical Co-precipitation Preparation of ZnMoO4/Aloe-Derived Porous Carbon and Catalytic Performance

  • Corresponding author: Si-Ning YUN, yunsining@xauat.edu.cn
  • Received Date: 29 September 2021
    Revised Date: 10 December 2021

Figures(8)

  • Herein, aloe-derived porous carbon (APC), ZnMoO4, and ZnMoO4/APC catalysts were successfully prepared by two-step activation and chemical co-precipitation, respectively. As counter electrodes (CEs) in dyesensitized solar cells (DSSCs), the electrochemical properties and photovoltaic performance of these three CE catalysts in Cu-mediated DSSCs with D35 and Y123 dyes were explored. The microstructure, chemical composition, specific surface area, and porous textures of APC, ZnMoO4, and ZnMoO4/APC were characterized by field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption isotherms. The results show that APC was a porous network structure with a specific surface area of 1 439 m2·g-1, and ZnMoO4 nanoparticles were evenly embedded or dispersed on the surface of APC. ZnMoO4/APC delivered a power conversion efficiency (PCE) of 3.97% and 3.72% in the Cu2+/Cu+ electrolyte-based DSSCs with D35 and Y123 dyes, respectively, which was higher than that of APC (2.72%, 2.61%), ZnMoO4 (1.24%, 1.08%) and Pt (2.86%, 2.80%) at the same conditions.
  • 加载中
    1. [1]

      Lewis N S, Nocera D G. Powering the Planet: Chemical Challenges in Solar Energy Utilization[J]. Proc. Natl. Acad. Sci. U.S.A., 2006,103(43):15729-15735. doi: 10.1073/pnas.0603395103

    2. [2]

      Yun S N, Hagfeldt A, Ma T L. Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv. Mater., 2014,26(36):6210-6237. doi: 10.1002/adma.201402056

    3. [3]

      Yuan S X, Yun S N, Zhang Y W, Dang J E, Sun M L, Dang C W, Deng Y Y. Dual-Phase Zinc Selenide In Situ Encapsulated into Size-Reduced ZIF-8 Derived Selenium and Nitrogen Co-doped Porous Carbon for Efficient Triiodide Reduction Reaction[J]. J. Mater. Chem. C, 2021,9(40):14408-14420. doi: 10.1039/D1TC02734D

    4. [4]

      Tang Q W, Zhang H H, Meng Y Y, He B L, Yu L M. Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2015,54(39):11448-11452. doi: 10.1002/anie.201505339

    5. [5]

      Yun S N, Zhang Y W, Xu Q, Liu J M, Qin Y. Recent Advance in New-Generation Integrated Devices for Energy Harvesting and Storage[J]. Nano Energy, 2019,60:600-619. doi: 10.1016/j.nanoen.2019.03.074

    6. [6]

      Hattori S, Wada Y, Yanagida S, Fukuzumi S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2005,127(26):9648-9654. doi: 10.1021/ja0506814

    7. [7]

      Yun S N, Liu Y F, Zhang T H, Ahmad S. Recent Advances in Alternative Counter Electrode Materials for Co-Mediated Dye-Sensitized Solar Cells[J]. Nanoscale, 2015,7(28):11877-11893. doi: 10.1039/C5NR02433A

    8. [8]

      Zhang D, Stojanovic M, Ren Y M, Cao Y M, Eickemeyer F T, Socie E, Vlachopoulos N, Moser J E, Zakeeruddin S M, Hagfeldt A, Gratzel M. A Molecular Photosensitizer Achieves a Voc of 1. 24 V Enabling Highly Efficient and Stable Dye-Sensitized Solar Cells with Copper(Ⅱ/Ⅰ)-Based Electrolyte[J]. Nat. Commun., 2021,12(1)1777.

    9. [9]

      Freitag M, Teuscher J, Saygili Y, Zhang X Y, Giordano F, Liska P, Hua J L, Zakeeruddin S M, Moser J E, Grätzel M, Hagfeldt A. Dye-Sensitized Solar Cells for Efficient Power Generation Under Ambient Lighting[J]. Nat. Photonics, 2017,11(6):372-378. doi: 10.1038/nphoton.2017.60

    10. [10]

      Zhang Y W, Yun S N, Qiao X Y, Sun M L, Dang J E, Dang C W, Yang J J. Hybridization of Mn/Ta Bimetallic Oxide and Mesh-like Porous Bio-Carbon for Boosting Copper Reduction for D35/Y123-Sensitized Solar Cells and Hydrogen Evolution[J]. J. Alloys Compd., 2022,893162349. doi: 10.1016/j.jallcom.2021.162349

    11. [11]

      Yun S N, Pu H H, Chen J H, Hagfeldt A, Ma T L. Enhanced Performance of Supported HfO2 Counter Electrodes for Redox Couples Used in Dye-Sensitized Solar Cells[J]. ChemSusChem, 2014,7(2):442-450. doi: 10.1002/cssc.201301140

    12. [12]

      Zhang Y W, Yun S N, Wang Z Q, Zhang Y L, Wang C, Arshad A, Han F, Si Y M, Fang W. Highly Efficient Bio-Based Porous Carbon Hybridized with Tungsten Carbide as Counter Electrode for Dye-Sensitized Solar Cell[J]. Ceram. Int., 2020,46(10):15812-15821. doi: 10.1016/j.ceramint.2020.03.128

    13. [13]

      Tang Q W, Duan J L, Duan Y Y, He B L, Yu L M. Recent Advances in Alloy Counter Electrodes for Dye-Sensitized Solar Cells[J]. A Critical Review. Electrochim. Acta, 2015,178:886-899. doi: 10.1016/j.electacta.2015.08.072

    14. [14]

      Yun S N, Freitas J N, Nogueira A F, Wang Y M, Ahmad S, Wang Z S. Dye-Sensitized Solar Cells Employing Polymers[J]. Prog. Polym. Sci., 2016,59:1-40. doi: 10.1016/j.progpolymsci.2015.10.004

    15. [15]

      Dang J E, Yun S N, Zhou X, Zhang Y W, Wu Z B. An Integrated Approach to Construct Tantalum Derivatives for Electrocatalysis Beyond the Triiodide Reduction Reaction[J]. Ceram. Int., 2021,47(16):23066-23077. doi: 10.1016/j.ceramint.2021.05.021

    16. [16]

      Zhang Y L, Yun S N, Wang C, Wang Z Q, Han F, Si Y M. Bio-Based Carbon-Enhanced Tungsten-Based Bimetal Oxides as Counter Electrodes for Dye-Sensitized Solar Cells[J]. J. Power Sources, 2019,423:339-348. doi: 10.1016/j.jpowsour.2019.03.054

    17. [17]

      Du F, Yang Q, Qin T Z, Li G. Morphology-Controlled Growth of NiCo2O4 Ternary Oxides and Their Application in Dye-Sensitized Solar Cells as Counter Electrodes[J]. Sol. Energy, 2017,146:125-130. doi: 10.1016/j.solener.2017.02.025

    18. [18]

      Zheng X J, Guo J H, Shi Y T, Xiong F Q, Zhang W H, Ma T L, Li C. Low-Cost and High-Performance CoMoS4 and NiMoS4 Counter Electrodes for Dye-Sensitized Solar Cells[J]. Chem. Commun., 2013,49(83):9645-9647. doi: 10.1039/c3cc45064c

    19. [19]

      Wang C, Yun S N, Fan Q Y, Wang Z Q, Zhang Y L, Han F, Si Y M, Hagfeldt A. A Hybrid Niobium-Based Oxide with Bio-Based Porous Carbon as an Efficient Electrocatalyst in Photovoltaics: A General Strategy for Understanding the Catalytic Mechanism[J]. J. Mater. Chem. A, 2019,7(24):14864-14875. doi: 10.1039/C9TA03540K

    20. [20]

      Qiao X Y, Yun S N, Han F, Zhang Y W, Arshad A, Chidambaram B, Wang Z Q, Zafar N, Si Y M, Li J W. Honeycomb-like Bio-Based Carbon Framework Decorated with Ternary Tantalum-Based Compounds as Efficient and Durable Electrocatalysts for Triiodide Reduction Reaction[J]. Int. J. Energy Res., 2020,44(9):7630-7644. doi: 10.1002/er.5495

    21. [21]

      Yun S N, Shi J, Si Y M, Sun M L, Zhang Y W, Arshad A, Yang C. Insight into Electrocatalytic Activity and Mechanism of Bimetal Niobium-Based Oxides In Situ Embedded into Biomass-Derived Porous Carbon Skeleton Nanohybrids for Photovoltaics and Alkaline Hydrogen Evolution[J]. J. Colloid Interface Sci., 2021,601:12-29. doi: 10.1016/j.jcis.2021.05.060

    22. [22]

      Yuan H, Jiao Q Z, Zhang S L, Zhao Y, Wu Q, Li H S. In Situ Chemical Vapor Deposition Growth of Carbon Nanotubes on Hollow CoFe2O4 as an Efficient and Low Cost Counter Electrode for Dye-Sensitized Solar Cells[J]. J. Power Sources, 2016,325:417-426. doi: 10.1016/j.jpowsour.2016.06.052

    23. [23]

      Li G R, Wang F, Song J, Xiong F Y, Gao X P. Tin-Conductive Carbon Black Composite as Counter Electrode for Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2012,65:216-220. doi: 10.1016/j.electacta.2012.01.041

    24. [24]

      Li G R, Wang F, Jiang Q W, Gao X P, Shen P W. Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter-Electrode Material for Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2010,49(21):3653-3656. doi: 10.1002/anie.201000659

    25. [25]

      Song J, Li G R, Xiong F Y, Gao X P. Synergistic Effect of Molybde-num Nitride and Carbon Nanotubes on Electrocatalysis for Dye-Sensitized Solar Cells[J]. J. Mater. Chem. C, 2012,22(38):20580-20585. doi: 10.1039/c2jm34878k

    26. [26]

      Yue G T, Lin J Y, Tai S Y, Xiao Y M, Wu J H. A Catalytic Composite Film of MoS2/Graphene Flake as a Counter Electrode for Pt-Free Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2012,85:162-168. doi: 10.1016/j.electacta.2012.08.040

    27. [27]

      Das S, Sudhagar P, Nagarajan S, Ito E, Lee S Y, Kang Y S, Choi W B. Synthesis of Graphene-CoS Electro-Catalytic Electrodes for Dye Sensitized Solar Cells[J]. Carbon, 2012,50(13):4815-4821. doi: 10.1016/j.carbon.2012.06.006

    28. [28]

      Tansoonton T, Maiaugree W, Karaphun A, Kotutha I, Swatsitang E. Synthesis of MoS2-MoO2/MWCNTs Counter Electrode for High-Efficient Dye-Sensitized Solar Cells[J]. J. Mater. Sci.: Mater. Electron., 2019,30(23):20778-20788. doi: 10.1007/s10854-019-02445-z

    29. [29]

      Mutta G R, Popuri S R, Wilson J I B, Bennett N S. Sol-Gel Spin Coated Well Adhered MoO3 Thin Films as an Alternative Counter Electrode for Dye Sensitized Solar Cells[J]. Solid State Sci., 2016,61:84-88. doi: 10.1016/j.solidstatesciences.2016.08.016

    30. [30]

      Li Z X, Ma Z Y, Zhang X, Du Q Z, Fu Y H, Shuang L, Yang K, Li L, Lai W D, Zhang W M. In-Situ Growth NiMoS3 Nanoparticles onto Electrospinning Synthesis Carbon Nanofibers as a Low Cost Platinum-Free Counter Electrode for Dye-Sensitized Solar Cells[J]. J. Alloys Compd., 2021,850156807. doi: 10.1016/j.jallcom.2020.156807

    31. [31]

      Huo J H, Wu J H, Zheng M, Tu Y G, Lan Z. Hydrothermal Synthesis of CoMoO4/Co9S8 Hybrid Nanotubes Based on Counter Electrodes for Highly Efficient Dye-Sensitized Solar Cells[J]. RSC Adv., 2015,5(101):83029-83035. doi: 10.1039/C5RA17026E

    32. [32]

      Xing T, Yun S N, Li B J, Wang K J, Chen J G, Jia B, Ke T, An J H. Coconut-Shell-Derived Bio-Based Carbon Enhanced Microbial Electrolysis Cells for Upgrading Anaerobic Co-digestion of Cow Manure and Aloe Peel Waste[J]. Bioresour. Technol., 2021,338125520. doi: 10.1016/j.biortech.2021.125520

    33. [33]

      Wang X D, Yun S N, Fang W, Zhang C, Liang X, Lei Z B, Liu Z H. Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors[J]. ACS Sustainable Chem. Eng., 2018,6(9):11397-11407. doi: 10.1021/acssuschemeng.8b01334

    34. [34]

      Wang Z Q, Yun S N, Wang X D, Wang C, Si Y M, Zhang Y L, Xu H F. Aloe Peel-Derived Honeycomb-like Bio-Based Carbon with Controllable Morphology and Its Superior Electrochemical Properties for New Energy Devices[J]. Ceram. Int., 2019,45(4):4208-4218. doi: 10.1016/j.ceramint.2018.11.091

    35. [35]

      Zhang Y W, Yun S N, Sun M L, Wang X, Zhang L S, Dang J E, Yang C, Yang J J, Dang C W, Yuan S X. Implanted Metal-Nitrogen Active Sites Enhance the Electrocatalytic Activity of Zeolitic Imidazolate Zinc Framework-Derived Porous Carbon for the Hydrogen Evolution Reaction in Acidic and Alkaline Media[J]. J. Colloid Interface Sci., 2021,604:441-457. doi: 10.1016/j.jcis.2021.06.152

    36. [36]

      Wang C, Yun S N, Xu H F, Wang Z Q, Han F, Zhang Y L, Si Y M, Sun M L. Dual Functional Application of Pomelo Peel-Derived Bio-Based Carbon with Controllable Morphologies: An Efficient Catalyst for Triiodide Reduction and Accelerant for Anaerobic Digestion[J]. Ceram. Int., 2020,46(3):3292-3303. doi: 10.1016/j.ceramint.2019.10.035

    37. [37]

      Madhu R, Veeramani V, Chen S M, Palanisamy J, Vilian A T E. Pumpkin Stem-Derived Activated Carbons as Counter Electrodes for Dye-Sensitized Solar Cells[J]. RSC Adv., 2014,4(109):63917-63921. doi: 10.1039/C4RA12585A

    38. [38]

      Wang G Q, Wang D L, Kuang S, Xing W, Zhuo S P. Hierarchical Porous Carbon Derived from Rice Husk as a Low-Cost Counter Electrode of Dye-Sensitized Solar Cells[J]. Renewable Energy, 2014,63:708-714. doi: 10.1016/j.renene.2013.10.033

    39. [39]

      Yun S N, Fang W, Du T T, Hu X L, Huang X L, Li X, Zhang C, Lund P D. Use of Bio-Based Carbon Materials for Improving Biogas Yield and Digestate Stability[J]. Energy, 2018,164:898-909. doi: 10.1016/j.energy.2018.09.067

    40. [40]

      Zafar N, Yun S N, Sun M L, Shi J, Arshad A, Zhang Y W, Wu Z B. Cobalt-Based Incorporated Metals in Metal-Organic Framework-Derived Nitrogen-Doped Carbon as a Robust Catalyst for Triiodide Reduction in Photovoltaics[J]. ACS Catal., 2021:13680-13695.

    41. [41]

      YANG C, ZHAO X Y, ZHANG L Z. Preparation and Electrochemical Performance of Porous Carbon/Selenium Composite Free-Standing Electrode[J]. Chinese J. Inorg. Chem., 2021,37(11):1922-1930. doi: 10.11862/CJIC.2021.242 

    42. [42]

      Jing H Y, Shi Y T, Wu D Y, Liang S X, Song X D, An Y L, Hao C. Well-Defined Heteroatom-Rich Porous Carbon Electrocatalyst Derived from Biowaste for High-Performance Counter Electrode in Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2018,281:646-653. doi: 10.1016/j.electacta.2018.06.020

    43. [43]

      Yun S N, Zhang H, Pu H H, Chen J H, Hagfeldt A, Ma T L. Metal Oxide/Carbide/Carbon Nanocomposites: In Situ Synthesis, Characterization, Calculation, and Their Application as an Efficient Counter Electrode Catalyst for Dye-Sensitized Solar Cells[J]. Adv. Energy Mater., 2013,3(11):1407-1412. doi: 10.1002/aenm.201300242

    44. [44]

      Chen Y Y, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai Z H, Wan L J, Hu J S. Self-Templated Fabrication of MoNi4/MoO3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution[J]. Adv. Mater., 2017,29(39)1703311. doi: 10.1002/adma.201703311

    45. [45]

      Lin L, Yang Z K, Jiang Y F, Xu A W. Nonprecious Bimetallic (Fe, Mo)-N/C Catalyst for Efficient Oxygen Reduction Reaction[J]. ACS Catal., 2016,6(7):4449-4454. doi: 10.1021/acscatal.6b00535

    46. [46]

      Li J W, Yun S N, Han F, Si Y M, Arshad A, Zhang Y W, Chidambaram B, Zafar N, Qiao X Y. Biomass-Derived Carbon Boosted Catalytic Properties of Tungsten-Based Nanohybrids for Accelerating the Triiodide Reduction in Dye-Sensitized Solar Cells[J]. J. Colloid Interface Sci., 2020,578:184-194. doi: 10.1016/j.jcis.2020.04.089

    47. [47]

      Higashino T, Iiyama H, Nishimura I, Imahori H. Exploration on the Combination of Push-Pull Porphyrin Dyes and Copper(Ⅰ/Ⅱ) Redox Shuttles toward High-Performance Dye-Sensitized Solar Cells[J]. Chem. Lett., 2020,49(8):936-939. doi: 10.1246/cl.200317

    48. [48]

      Colombo A, Di Carlo G, Dragonetti C, Magni M, Biroli A O, Pizzotti M, Roberto D, Tessore F, Benazzi E, Bignozzi C A, Casarin L, Caramori S. Coupling of Zinc Porphyrin Dyes and Copper Electrolytes: A Springboard for Novel Sustainable Dye-Sensitized Solar Cells[J]. Inorg. Chem., 2017,56(22):14189-14197. doi: 10.1021/acs.inorgchem.7b02323

    49. [49]

      Magni M, Giannuzzi R, Colombo A, Cipolla M P, Dragonetti C, Caramori S, Carli S, Grisorio R, Suranna G P, Bignozzi C A, Roberto D, Manca M. Tetracoordinated Bis-phenanthroline Copper-Complex Couple as Efficient Redox Mediators for Dye Solar Cells[J]. Inorg. Chem., 2016,55(11):5245-5253. doi: 10.1021/acs.inorgchem.6b00204

    50. [50]

      Rodrigues R R, Lee J M, Taylor N S, Cheema H, Chen L Z, Fortenberry R C, Delcamp J H, Jurss J W. Copper-Based Redox Shuttles Supported by Preorganized Tetradentate Ligands for Dye-Sensitized Solar Cells[J]. Dalton Trans., 2020,49(2):343-355. doi: 10.1039/C9DT04030G

    51. [51]

      Dragonetti C, Magni M, Colombo A, Fagnani F, Roberto D, Melchiorre F, Biagini P, Fantacci S. Towards Efficient Sustainable Full-Copper Dye-Sensitized Solar Cells[J]. Dalton Trans., 2019,48(26):9703-9711. doi: 10.1039/C9DT00790C

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(5)
  • Abstract views(820)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return