Citation: Mei-Chao GAO, Yun-Yun GONG, Zi-Yue LI, Bai-Hui WANG, Xiao-Qing HUANG, Wen-Jiao YU. Fabrication of Bi12O17Br2 with Efficient Photocatalytic N2 Fixation Boosted by Photoinduced Oxygen Vacancies[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 542-550. doi: 10.11862/CJIC.2022.043 shu

Fabrication of Bi12O17Br2 with Efficient Photocatalytic N2 Fixation Boosted by Photoinduced Oxygen Vacancies

  • Corresponding author: Mei-Chao GAO, meichaogao@hotmail.com
  • Received Date: 14 September 2021
    Revised Date: 29 December 2021

Figures(8)

  • Bi12O17Br2 photocatalyst was prepared through a one-pot hydrothermal method. An average microsheets size of 1.2 μm and a high specific surface area of ca. 29 m2·g-1 were observed for Bi12O17Br2 photocatalyst. Bi12O17Br2 has a bandgap of 2.42 eV, which can be excited under visible light illumination. The photoinduced oxygen vacancies are easily generated on the surface of Bi12O17Br2. The N2 molecules could be captured and activated by oxygen vacancies. An NH3 generation rate of 337.6 μmol·g-1·h-1 was detected on Bi12O17Br2 under visible light irradiation. It demonstrates that the accomplishment of the visible-light-driven photocatalytic for the N2 photo fixation with H2O over a Bi12O17Br2 photocatalyst.
  • 加载中
    1. [1]

      Bao D, Zhang Q, Meng F L, Zhong H X, Shi M M, Zhang Y, Yan J M, Jiang Q, Zhang X B. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle[J]. Adv. Mater., 2017,29(3)1604799. doi: 10.1002/adma.201604799

    2. [2]

      Wang K Y, Gu G Z, Hu S Z, Zhang J, Sun X L, Wang F, Li P, Zhao Y F, Fan Z P, Zou X. Molten Salt Assistant Synthesis of Three-Dimensional Cobalt Doped Graphitic Carbon Nitride for Photocatalytic N2 Fixation: Experiment and DFT Simulation Analysis[J]. Chem. Eng. J., 2019,368:896-904. doi: 10.1016/j.cej.2019.03.037

    3. [3]

      Bai Y J, Bai H Y, Qu K G, Wang F G, Guan P, Xu D B, Fan W Q, Shi W D. In-Situ Approach to Fabricate BiOI Photocathode with Oxygen Vacancies: Understanding the N2 Reduced Behavior in Photoelectro-chemical System[J]. Chem. Eng. J., 2019,362:349-356. doi: 10.1016/j.cej.2019.01.051

    4. [4]

      GAO X M, SHANG Y Y, LIU L B. Preparation and Photocatalytic Nitrogen Fixation Performance of Cd Doping δ-Bi2O3 Nanosheets[J]. Chinese J. Inorg. Chem., 2019,35(4):580-588.  

    5. [5]

      Tanaka H, Nishibayashi Y, Yoshizawa K. Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes[J]. Acc. Chem. Res., 2016,49(5):987-995. doi: 10.1021/acs.accounts.6b00033

    6. [6]

      Schrauzer G N, Guth T D. Photolysis of Water and Photoreduction of Nitrogen on Titanium Dioxide[J]. J. Am. Chem. Soc., 1977,99(22):7189-7193. doi: 10.1021/ja00464a015

    7. [7]

      Liao Y, Lin J N, Cui B H, Xie G, Hu S. Well-Dispersed Ultrasmall Ruthenium on TiO2 (P25) for Effective Photocatalytic N2 Fixation in Ambient Condition[J]. J. Photochem. Photobiol. A, 2020,387112100. doi: 10.1016/j.jphotochem.2019.112100

    8. [8]

      Wu G, Yu L H, Liu Y F, Zhao J M, Han Z, Geng G. One Step Synthesis of N Vacancy-Doped g-C3N4/Ag2CO3 Heterojunction Catalyst with Outstanding"Two-Path"Photocatalytic N2 Fixation Ability via In-Situ Self-Sacrificial Method[J]. Appl. Surf. Sci., 2019,481:649-660. doi: 10.1016/j.apsusc.2019.03.112

    9. [9]

      Zhang C M, Chen G, Lv C D, Yao Y, Xu Y L, Jin X L, Meng Q Q. Enabling Nitrogen Fixation on Bi2WO6 Photocatalyst by c-PAN Surface Decoration[J]. ACS Sustainable Chem. Eng., 2018,6(9):11190-11195. doi: 10.1021/acssuschemeng.8b02236

    10. [10]

      Cao S H, Zhou N, Gao F H, Chen H, Jiang F. All-Solid-State Z-Scheme 3, 4-Dihydroxybenzaldehyde-Functionalized Ga2O3/Graphitic Carbon Nitride Photocatalyst with Aromatic Rings as Electron Mediators for Visible-Light Photocatalytic Nitrogen Fixation[J]. Appl. Catal. B, 2017,218:600-610. doi: 10.1016/j.apcatb.2017.07.013

    11. [11]

      Wang S Y, Hai X, Ding X, Chang K, Xiang Y G, Meng X G, Yang Z X, Chen H, Ye J H. Light-Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar-Driven Nitrogen Fixation in Pure Water[J]. Adv. Mater., 2017,29(31)1701774. doi: 10.1002/adma.201701774

    12. [12]

      Li H, Shang J, Ai Z H, Zhang L Z. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets[J]. J. Am. Chem. Soc., 2015,137(19):6393-6399. doi: 10.1021/jacs.5b03105

    13. [13]

      Li J, Sun S Y, Qian C X, He L, Chen K K, Zhang T Q, Chen Z L, Ye M M. The Role of Adsorption in Photocatalytic Degradation of Ibuprofen under Visible Light Irradiation by BiOBr Microspheres[J]. Chem. Eng. J., 2016,297:139-147. doi: 10.1016/j.cej.2016.03.145

    14. [14]

      Gao X Y, Tang G B, Peng W, Guo Q, Luo Y M. Surprise in the Phosphate Modification of BiOCl with Oxygen Vacancy: In Situ Construction of Hierarchical Z-Scheme BiOCl-OV-BiPO4 Photocatalyst for the Degradation of Carbamazepine[J]. Chem. Eng. J., 2019,360:1320-1329. doi: 10.1016/j.cej.2018.10.216

    15. [15]

      Gao M C, Yang J X, Sun T, Zhang Z Z, Zhang D F, Huang H J, Lin H X, Fang Y, Wang X X. Persian Buttercup-like BiOBrxCl1-x Solid Solution for Photocatalytic Overall CO2 Reduction to CO and O2[J]. Appl. Catal. B, 2019,243:734-740. doi: 10.1016/j.apcatb.2018.11.020

    16. [16]

      Gao M C, Zhang D F, Pu X P, Li H, Lv D D, Zhang B B, Shao X. Facile Hydrothermal Synthesis of Bi/BiOBr Composites with Enhanced Visible-Light Photocatalytic Activities for the Degradation of Rhodamine B[J]. Sep. Purif. Technol., 2015,154:211-216. doi: 10.1016/j.seppur.2015.09.063

    17. [17]

      Zhang L, Wang W Z, Jiang D, Gao E P, Sun S M. Photoreduction of CO2 on BiOCl Nanoplates with the Assistance of Photoinduced Oxygen Vacancies[J]. Nano Res., 2015,8(3):821-831. doi: 10.1007/s12274-014-0564-2

    18. [18]

      Wang J L, Yu Y, Zhang L Z. Highly Efficient Photocatalytic Removal of Sodium Pentachlorophenate with Bi3O4Br under Visible Light[J]. Appl. Catal. B, 2013,136-137:112-121. doi: 10.1016/j.apcatb.2013.02.009

    19. [19]

      Di J, Song P, Zhu C, Chen C, Xiong J, Duan M, Long R, Zhou W Q, Xu M Z, Kang L X, Lin B, Liu D B, Chen S M, Liu C T, Li H M, Zhao Y L, Li S Z, Yan Q Y, Song L, Liu Z. Strain-Engineering of Bi12O17Br2 Nanotubes for Boosting Photocatalytic CO2 Reduction[J]. ACS Mater. Lett., 2020,2(8):1025-1032. doi: 10.1021/acsmaterialslett.0c00306

    20. [20]

      Meng C X, Wang B, Ji M X, Jiang Q, Chen R, Ji S N, Chen Z G, Li H M, Xia J X. One-Step Mechanical Synthesis of Oxygen-Defect Modified Ultrathin Bi12O17Br2 Nanosheets for Boosting Photocatalytic Activity[J]. ChemistrySelect, 2020,5(36):11177-11184. doi: 10.1002/slct.202003267

    21. [21]

      Li R, Liu J X, Duo F F, Zhang C M, Wang Y W, Wang Y F, Zhang X C, Fan C M. Facile Hydrolysis Synthesis of Novel Bi12O17Br2 Photocatalyst with Superior Reduction Ability and Photocatalytic Activity[J]. Mater. Lett., 2018,224:5-8. doi: 10.1016/j.matlet.2018.04.057

    22. [22]

      Li K L, Lee W W, Lu C S, Dai Y M, Chou S Y, Chen H L, Lin H P, Chen C C. Synthesis of BiOBr, Bi3O4Br, and Bi12O17Br2 by Controlled Hydrothermal Method and Their Photocatalytic Properties[J]. J. Taiwan Inst. Chem. Eng., 2014,45(5):2688-2697. doi: 10.1016/j.jtice.2014.04.001

    23. [23]

      Zeng L, Zhe F, Wang Y, Zhang Q L, Zhao X Y, Hu X, Wu Y, He Y M. Preparation of Interstitial Carbon Doped BiOI for Enhanced Performance in Photocatalytic Nitrogen Fixation and Methyl Orange Degradation[J]. J. Colloid Interface Sci., 2019,539:563-574. doi: 10.1016/j.jcis.2018.12.101

    24. [24]

      Dai Y T, Ren P J, Li Y R, Lv D D, Shen Y B, Li Y W, Niemants-verdriet H, Besenbacher F, Xiang H W, Hao W C, Lock N, Wen X D, Lewis J P, Su R. Solid Base Bi24O31Br10(OH)δ with Active Lattice Oxygen for the Efficient Photo-Oxidation of Primary Alcohols to Aldehydes[J]. Angew. Chem. Int. Ed., 2019,539:563-574.

    25. [25]

      Kong X Y, Ng B J, Tan K H, Chen X F, Wang H T, Mohamed A R, Chai S P. Simultaneous Generation of Oxygen Vacancies on Ultrathin BiOBr Nanosheets during Visible-Light-Driven CO2 Photoreduction Evoked Superior Activity and Long-Term Stability[J]. Catal. Today, 2018,314:20-27. doi: 10.1016/j.cattod.2018.04.018

    26. [26]

      Li H, Shang J, Zhu H J, Yang Z P, Ai Z H, Zhang L Z. Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl[J]. ACS Catal., 2016,6(12):8276-8285. doi: 10.1021/acscatal.6b02613

    27. [27]

      Ning S B, Lin H X, Tong Y C, Zhang X Y, Lin Q Y, Zhang Y Q, Long J L, Wang X X. Dual Couples Bi Metal Depositing and Ag@AgI Islanding on BiOI 3D Architectures for Synergistic Bactericidal Mechanism of E. coli under Visible Light[J]. Appl. Catal. B, 2017,204:1-10. doi: 10.1016/j.apcatb.2016.11.006

  • 加载中
    1. [1]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    7. [7]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    8. [8]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    14. [14]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    15. [15]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    20. [20]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

Metrics
  • PDF Downloads(9)
  • Abstract views(1074)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return