Citation: Jiu-Jun ZHOU, Lai-Hui LUO, Peng DU, Jun-Peng XUE. Synthesis and Optical Properties of Eu3+-Doped Ca2KZn2(VO4)3 Yellow-Emitting Phosphors for Full-Spectrum White Light-Emitting Diode[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 244-252. doi: 10.11862/CJIC.2022.041 shu

Synthesis and Optical Properties of Eu3+-Doped Ca2KZn2(VO4)3 Yellow-Emitting Phosphors for Full-Spectrum White Light-Emitting Diode

Figures(7)

  • Traditional phosphor-converted white light-emitting diode (WLED), which is constructed either by using a blue-chip to pump yellow phosphors or a near-ultraviolet (NUV) chip to excite trichromatic phosphors, suffers from an evident cavity in the cyan region, resulting in the unsatisfied color quality of the white light. Thereby, Eu3+-doped Ca2KZn2 (VO4)3 yellow-emitting phosphors with the emission in a range of 400-750 nm were prepared to cover this spectral gap to obtain the full-spectrum white light. Excited by 378 nm, both the emissions arising from VO43- group and Eu3+ were seen in the prepared samples. The optimal doping content (molar fraction) for Eu3+ ions in the Ca2KZn2(VO4)3 host was 0.05 and energy transfer efficiency from VO43- group to Eu3+ was calculated to be around 64.9%. The thermal quenching performances of the final compounds were investigated via the use of the temperature-dependent emission spectra and the activation energies of the VO43- group and Eu3+ were 0.538 and 0.510 eV, respectively. In addition, a WLED device using the prepared yellow-emitting phosphors, commercial blue phosphors, and NUV chip exhibited well-distributed warm white light with low color correlated temperature of 3 843 K and high color rendering index of 85.8.
  • 加载中
    1. [1]

      Zhao M, Xia Z G, Huang X X, Ning L X, Gautier R, Molokeev M S, Zhou Y Y, Chuang Y C, Zhang Q Y, Liu Q L, Poeppelmeier K R. Li Substituent Tuning of LED Phosphors with Enhanced Efficiency, Tunable Photoluminescence[J]. Sci. Adv., 2019,5eaav0363. doi: 10.1126/sciadv.aav0363

    2. [2]

      Cheng C, Ning L X, Ke X X, Molokeev M S, Wang Z L, Zhou G J, Chuang Y C, Xia Z G. Designing High-Performance LED Phosphors by Controlling the Phase Stability via a Heterovalent Substitution Strategy[J]. Adv. Opt. Mater., 2020,81901608. doi: 10.1002/adom.201901608

    3. [3]

      Zhang X G, Zhu Z P, Guo Z Y, Sun Z S, Yang Z C, Zhang T T, Zhang J L, Wu Z C, Wang Z L. Dopant Preferential Site Occupation and High Efficiency White Emission in K2BaCa(PO4)2: Eu2+, Mn2+ Phosphors for High Quality White LED Applications[J]. Inorg. Chem. Front., 2019,6:1289-1298. doi: 10.1039/C9QI00138G1608

    4. [4]

      ZHANG X, SONG H J, MA N, LIU J, ZHANG X X, WU Z C. Spectral Control of Ba5-2x-yTbxNax(PO4)3Cl: yEu2+ Phosphor Achieved by Energy Transfer[J]. Chinese J. Inorg. Chem.,, 2021,37(7):1251-1257.  

    5. [5]

      Wei Q, Ding J Y, Wang Y H. A Novel Tunable Extra-Broad Yellow-Emitting Nitride Phosphor with Zero-Thermal-Quenching Property[J]. Chem. Eng. J., 2020,386124004. doi: 10.1016/j.cej.2019.124004

    6. [6]

      Gao Z Y, Wang X Y, Bai Y F, Sun C, Liu H X, Wang L, Su S J, Tian K K, Zhang Z H, Bi W G. High Color Rendering Index and Stable White Light Emitting Diodes Fabricated from Lead Bromide Perovskites[J]. Appl. Phys. Lett., 2019,115153103. doi: 10.1063/1.5121800

    7. [7]

      Li G H, Yang N, Zhang J, Si J Y, Wang Z L, Cai G M, Wang X J. The Non-concentration-Quenching Phosphor Ca3Eu2B4O12 for WLED Application[J]. Inorg. Chem., 2020,59:3894-3904. doi: 10.1021/acs.inorgchem.9b03565

    8. [8]

      Khan W U, Zhou L, Li X H, Zhou W J, Khan D, Niaz S I, Wu M M. Single Phase White LED Phosphor Ca3YAl3B4O15: Ce3+, Tb3+, Sm3+ with Superior Performance: Color-Tunable and Energy Transfer Study[J]. Chem. Eng. J., 2021,410128455. doi: 10.1016/j.cej.2021.128455

    9. [9]

      Zhong J Y, Zhuo Y, Hariyani S, Zhao W R, Wen J, Brgoch J. Closing the Cyan Gap Toward Full-Spectrum LED Lighting with NaMgBO3: Ce3+[J]. Chem. Mater., 2020,32:882-888. doi: 10.1021/acs.chemmater.9b04739

    10. [10]

      Zhou J C, Yao Y, Chen Y, Wang B, Huang X T, Lai Y, Zhang Y L, Wu Q S. Synthesis, Energy Transfer Mechanism, and Tunable Emissions of Novel Na3La(VO4)2: Re3+ (Re3+=Dy3+, Eu3+, and Sm3+) Vanadate Phosphors for Near-UV-Excited White LEDs[J]. Ceram. Int., 2020,46:6276-6283. doi: 10.1016/j.ceramint.2019.11.098

    11. [11]

      Yang P X, Li L, Deng Y S, Wang Y J, Jiang S, Luo X B, Xiang G T, Lu Y, Zhou X J. Realizing Emission Color Tuning, Ratiometric Optical Thermometry and Temperature-Induced Red Shift Investigation in Novel Eu3+-Doped Ba3La(VO4)3 Phosphors[J]. Dalton Trans., 2019,48:10824-10833.

    12. [12]

      Bharat L K, Jeon S, Krishna K G, Yu J S. Rare-Earth Free Self-Luminescent Ca2KZn2(VO4)3 Phosphors for Intense White Light-Emitting Diodes[J]. Sci. Rep., 2017,742348. doi: 10.1038/srep42348

    13. [13]

      Du P, Hua Y B, Yu J S. Energy Transfer from VO43- Group to Sm3+ Ions in Ba3(VO4)2: 3xSm3+ Microparticles: A Bifunctional Platform for Simultaneous Optical Thermometer and Safety Sign[J]. Chem. Eng. J., 2018,352:352-359. doi: 10.1016/j.cej.2018.07.019

    14. [14]

      Zhang S Y, Zhang P Y, Huang Y L, Seo H J. Self-Activated Emission and Spectral Temperature-Dependence of Gd8V2O17 Phosphor[J]. J. Lumin., 2019,207:460-464. doi: 10.1016/j.jlumin.2018.11.054

    15. [15]

      Zhao J, Wang X, Li L, Guo C F. Near-Infrared Emissions in Host Sensitized Ba2YV3O11: RE3+ (RE=Nd, Ho, Yb) Down-Converting Phosphors[J]. Ceram. Int., 2020,46:5015-5019. doi: 10.1016/j.ceramint.2019.10.242

    16. [16]

      Dang P P, Liu D J, Wei Y, Li G G, Lian H Z, Shang M M, Lin J. Highly Efficient Cyan-Green Emission in Self-Activated Rb3RV2O8 (R=Y, Lu) Vanadate Phosphors for Full-Spectrum White Light-Emitting Diodes (LEDs)[J]. Inorg. Chem., 2020,59:6026-6038. doi: 10.1021/acs.inorgchem.0c00015

    17. [17]

      Huang X Y, Wang S Y, Rtimi S, Devakumar B. KCa2Mg2V3O12: A Novel Efficient Rare-Earth-Free Self-Activated Yellow-Emitting Phosphor[J]. J. Photochem. Photobiol. A, 2020,401112765. doi: 10.1016/j.jphotochem.2020.112765

    18. [18]

      Filho P C S, Alain J, Leménager G, Larquet E, Fick J, Serra O A, Gacoin T. Colloidal Rare Earth Vanadate Single Crystalline Particles as Ratiometric Luminescent Thermometers[J]. J. Phys. Chem. C, 2019,123:2441-2450.

    19. [19]

      Kunti A K, Ghosh L, Sharma S K, Swart H C. Synthesis and Luminescence Mechanism of White Light Emitting Eu3+ Doped CaZnV2O7 Phosphors[J]. J. Lumin., 2019,214116530. doi: 10.1016/j.jlumin.2019.116530

    20. [20]

      Shisina S, Merin P, Vinduja V, Som S, Ahmad S, Nishanth K G, Allu A R, Das S. Energy Transfer in Tb3+-Doped Ba2Y0.67V2O8 Phosphors Preferential for Near White Light Emission[J]. Mater. Lett., 2020,273127952. doi: 10.1016/j.matlet.2020.127952

    21. [21]

      Bharathi N V, Jeyakumaran T, Ramaswamy S, Jayabalakrishnan S S. Synthesis and Characterization of a Eu3+-Activated Ba2-xV2O7: xEu3+ Phosphor Using a Hydrothermal Method: A Potential Material for Near-UV-WLED Applications[J]. Luminescence, 2021,36:849-859. doi: 10.1002/bio.4031

    22. [22]

      Du P, Wan X M, Luo L L, Li W P, Li L. Thermally Stable Tb3+/Eu3+-Codoped K0.3Bi0.7F2.4 Nanoparticles with Multicolor Luminescence for White-Light-Emitting Diodes[J]. ACS Appl. Nano Mater., 2021,4:7062-7071. doi: 10.1021/acsanm.1c01072

    23. [23]

      Xu X, Li H L, Mei L, Meng R R, Chen L J, Zhao J W. Double-Oxalate-Bridging Tetralanthanide Containing Divacant Lindqvist Isopolytungstates with an Energy Transfer Mechanism and Luminous Color Adjustablility through Eu3+/Tb3+ Codoping[J]. Inorg. Chem., 2020,59:648-660. doi: 10.1021/acs.inorgchem.9b02903

    24. [24]

      Hasegawa T, Abe O, Koizumi A, Ueda T, Toda O, Sato M. Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa3MV3O12 (M=Zn and Mg)[J]. Inorg. Chem., 2018,57:857-866. doi: 10.1021/acs.inorgchem.7b02820

    25. [25]

      Zhou X J, Chen L N, Jiang S, Xiang G T, Li L, Tang X, Luo X B, Pang Y. Eu3+ Activated LiSrVO4 Phosphors: Emission Color Tuning and Potential Application in Temperature Sensing[J]. Dyes Pigm, 2018,151:219-266. doi: 10.1016/j.dyepig.2017.12.059

    26. [26]

      Ran M, Liu N, Yang H, Meng R W, Chen M W, Lu H F, Yang Y. Positive Effects in Perovskite Solar Cells Achieved Using Down-Conversion NaEuF4 Nanoparticles[J]. Appl. Phys. Lett., 2020,116113503. doi: 10.1063/1.5134939

    27. [27]

      Liu D J, Dang P P, Yun X H, Li G G, Lian H Z, Lin J. Luminescence Color Tuning and Energy Transfer Properties in (Sr, Ba)2LaGaO5: Bi3+, Eu3+ Solid Solution Phosphors: Realization of Single-Phased White Emission for WLEDs[J]. J. Mater. Chem. C, 2019,7:13536-13547. doi: 10.1039/C9TC04938J

    28. [28]

      Du P, Ran W G, Hou Y F, Luo L L, Li W P. Eu3+-Activated NaGdF4 Nanorods for Near-Ultraviolet Light-Triggered Indoor Illumination[J]. ACS Appl. Nano Mater., 2019,2:4275-4285. doi: 10.1021/acsanm.9b00743

    29. [29]

      Xu H, Zhang W D, Liu R H, Liu Y, Zhou T L, Cho Y J, Gao W, Yan C P, Hirosaki N, Xie R J. Significantly Enhanced Photolumines-cence and Thermal Stability of La3Si8N11O4: Ce3+, Tb3+ via the Ce3+ → Tb3+ Energy Transfer: A Blue-Green Phosphor for Ultraviolet LEDs[J]. RSC Adv., 2018,8:35271-35279. doi: 10.1039/C8RA07011C

    30. [30]

      Tang J, Luo L L, Li W P, Wang J, Du P. Ethylene Glycol Associated Facile Preparation and Luminescent Behaviors of RE (RE=Sm3+, Dy3+) Ions Activated NaLuF4 Nanoparticles[J]. Opt. Mater., 2021,120111463. doi: 10.1016/j.optmat.2021.111463

    31. [31]

      Du P, Luo L L, Hou Y F, Li W P. Energy Transfer-Triggered Multi-color Emissions in Tb3+/Eu3+-Coactivated Y2Mo3O12 Negative Ther-mal Expansion Microparticles for Dual-Channel Tunable Lumines-cent Thermometers[J]. Mater. Adv., 2021,2:4824-4831. doi: 10.1039/D1MA00218J

    32. [32]

      Huang D Y, Dang P P, Lian H Z, Zeng Q G, Lin J. Luminescence and Energy-Transfer Properties in Bi3+/Mn4+-Codoped Ba2GdNbO6 Double-Perovskite Phosphors for White-Light-Emitting Diodes[J]. Inorg. Chem., 2019,58:15507-15519. doi: 10.1021/acs.inorgchem.9b02558

    33. [33]

      ZHOU J C, CHEN M, LAI Y J, SHI C, WU D W, WU Q S. Synthesis and Luminescence Properties of Broadband Emitting Yellow Phos-phor Sr8MgAl(PO4)7: xEu2+ for White Light-Emitting Diode[J]. Chinese J. Inorg. Chem., 2021,37(7):1237-1244.  

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(2)
  • Abstract views(722)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return