Citation: Feng-He ZHAO, Chong-Min ZHANG. Application of Monodisperse SiO2 Nanoparticles Composite Gel Electrolytes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 313-320. doi: 10.11862/CJIC.2022.040 shu

Application of Monodisperse SiO2 Nanoparticles Composite Gel Electrolytes

  • Corresponding author: Feng-He ZHAO, work3857@163.com
  • Received Date: 25 August 2021
    Revised Date: 13 December 2021

Figures(6)

  • In this work, the well-monodispersed SiO2 nanoparticles (about 130 nm) were used as the filler while the polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) was used as the polymer matrix. The monodisperse SiO2 composite gel polymer electrolytes (MCGPEs) were prepared by a simple method and applied to lithium batteries. SiO2 has better dispersion and uniformity in the polymer matrix. Compared with the conventional composite gel polymer electrolytes (GPEs) and commercial SiO2 composite gel polymer electrolytes (CGPEs), MCGPEs exhibited the more excellent ability of liquid absorption and better lithium-ion migration ability. Moreover, the cells which used MCGPEs as electrolytes maintained a high specific capacity of 121.1 mAh·g-1 after 300 cycles at 1.0C, showing a satisfactory cycle performance. Meanwhile, the rate performance of MCGPEs was also excellent. The cells using MCGPEs owned the specific capacity of 135 mAh·g-1 at 10C which was higher than GPEs cells (76.2 mAh·g-1).
  • 加载中
    1. [1]

      Sui Y M, Liu C F, Masse R C, Neale Z G, Atif M, AlSalhi M, Cao G Z. Dual-Ion Batteries: The Emerging Alternative Rechargeable Batteries[J]. Energy Storage Mater., 2020,25:1-32.  

    2. [2]

      Costa , C M, Lee Y H, Kim J H, Lee S Y, Lanceros-Mendez S. Recent Advances on Separator Membranes for Lithium-Ion Battery Applications: From Porous Membranes to Solid Electrolytes[J]. Energy Storage Mater., 2019,22:346-375.  

    3. [3]

      Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G. Anode-Free Rechargeable Lithium Metal Batteries[J]. Adv. Funct. Mater., 2016,26:7094-7102. doi: 10.1002/adfm.201602353

    4. [4]

      Lin D, Liu Y, Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries[J]. Nat. Nanotechnol., 2017,12(3):194-206. doi: 10.1038/nnano.2017.16

    5. [5]

      Ren W H, Ding C F, Fu X W, Huang Y. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives[J]. Energy Storage Mater., 2020,34:515-535.  

    6. [6]

      Ghazi Z A, Sun Z, Sun C, Qi F, An B, Li F, Cheng H M. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries[J]. Small, 2019,15(35)e1900687. doi: 10.1002/smll.201900687

    7. [7]

      Zhao Q, Stalin S, Zhao C Z, Archer L A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries[J]. Nat. Rev. Mater., 2020,5(3):1-24. doi: 10.1038/s41578-019-0165-5

    8. [8]

      Pahari D, Puravankara S. Greener, Safer, and Sustainable Batteries: An Insight into Aqueous Electrolytes for Sodium-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2020,8(29):10613-10625. doi: 10.1021/acssuschemeng.0c02145

    9. [9]

      Ding X, Huang X B, Jin J L, Ming H, Wang L M, Ming J. Advanced and Safer Lithium-Ion Battery Based on Sustainable Electrodes[J]. J. Power Sources, 2018,379:53-59. doi: 10.1016/j.jpowsour.2018.01.027

    10. [10]

      Yuan M Q, Liu K. Rational Design on Separators and Liquid Electrolytes for Safer Lithium-Ion Batteries[J]. J. Energy Chem., 2020,43(4):70-82.

    11. [11]

      Cheng X, Pan J, Zhao Y, Liao M, Peng H S. Gel Polymer Electrolytes for Electrochemical Energy Storage[J]. Adv. Energy Mater., 2018,81702184. doi: 10.1002/aenm.201702184

    12. [12]

      Zhai Y Y, Wang X W, Chen Y F, Sang X, Liu H Q, Sheng J L, Wu Y Q, Wang X Y, Li L. Multiscale-Structured Polyvinylidene Fluoride/Polyacrylonitrile/Vermiculite Nanosheets Fibrous Membrane with Uniform Li+ Flux Distribution for Lithium Metal Battery[J]. J. Membr. Sci., 2021,621118996. doi: 10.1016/j.memsci.2020.118996

    13. [13]

      BU A X, TAN Y, FANG R P, LI F, PEI S F, REN W C. A Graphene/PVDF/PP Multilayer Composite Separator for Long-Life and High Power Lithium-Ion batteries[J]. New Carbon Mater., 2017,32(1):63-70.  

    14. [14]

      Zhang K, Xu L L, Jiang J G, Calin N, Lam K F, Zhang S J, Wu H H, Wu G D, Albela B, Bonneviot L. Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres with Tunable Pore Structure[J]. J. Am. Chem. Soc., 2013,135(7):2427-2430. doi: 10.1021/ja3116873

    15. [15]

      Zhao H J, Deng N P, Kang W M, Li Z, Wang G, Cheng B W. Highly Multiscale Structural Poly(vinylidene fluoridehexafluoropropylene)/Poly-m-phenyleneisophthalamide Separator with Enhanced Interface Compatibility and Uniform Lithium-Ion Flux Distribution for Dendrite-Proof Lithium-Metal Batteries[J]. Energy Storage Mater., 2020,26:334-348. doi: 10.1016/j.ensm.2019.11.005

    16. [16]

      Gao S, Wang K L, Wang R X, Jiang M, Han J, Gu T T, Cheng S J, Jiang K. Poly(vinylidene fluoride)-Based Hybrid Gel Polymer Electrolytes for Additive-Free Lithium Sulfur Batteries[J]. J. Mater. Chem. A, 2017,5(34):17889-17895. doi: 10.1039/C7TA05145J

    17. [17]

      Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough J B, Yu G. A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte[J]. Angew. Chem. Int. Ed., 2018,57(8):2096-2100.

    18. [18]

      Zheng J X, Lu J, Amine K, Pan F. Depolarization Effect to Enhance the Performance of Lithium Ions Batteries[J]. Nano Energy, 2017,33:497-507.

    19. [19]

      Zhao Y B, Bai Y, Bai Y P, An M Z, Chen G R, Li W D, Li C, Zhou Y F. A Rational Design of Solid Polymer Electrolyte with High Salt Concentration for Lithium Battery[J]. J. Power Sources, 2018,407:23-30. doi: 10.1016/j.jpowsour.2018.10.045

    20. [20]

      Sannier L, Bouchet R, Rosso M, Tarascon J M. Evaluation of GPE Performances in Lithium Metal Battery Technology by Means of Simple Polarization Tests[J]. J. Power Sources, 2006,158(1):564-570. doi: 10.1016/j.jpowsour.2005.09.026

    21. [21]

      Yan C, Xu R, Qin J L, Yuan H, Xiao Y, Xu L, Huang J Q. 4.5 V High-Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode[J]. Angew. Chem. Int. Ed., 2019,58(43):15164-15164.  

    22. [22]

      Kurc B, Jesionowski T. Modified TiO2-SiO2 Ceramic Filler for a Composite Gel Polymer Electrolytes Working with LiMn2O4[J]. J. Solid State Electrochem., 2015,19(5):1427-1435. doi: 10.1007/s10008-015-2762-6

    23. [23]

      Zhu Y S, Yang Y Q, Fu L J, Wu Y P. A Porous Gel-Type Composite Membrane Reinforced by Nonwoven: Promising Polymer Electrolyte with High Performance for Sodium Ion Batteries[J]. Electrochim. Acta, 2017,224:405-411. doi: 10.1016/j.electacta.2016.12.030

    24. [24]

      Qin H F, Fu K, Zhang Y, Ye Y H, Song M Y, Kuang Y D, Jang S H, Jiang F, Cui L F. Flexible Nanocellulose Enhanced Li+ Conducting Membrane for Solid Polymer Electrolyte[J]. Energy Storage Mater., 2020,28(6058):293-299. doi: 10.1016/j.ensm.2020.03.019

    25. [25]

      Liao H, Chen H, Zhou F, Zhang Z. A Novel SiO2 Nanofiber-Supported Organic-Inorganic Gel Polymer Electrolyte for Dendrite-Free Lithium Metal Batteries[J]. J. Mater. Sci., 2020,55(2018):9504-9515. doi: 10.1007/s10853-020-04634-2

  • 加载中
    1. [1]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(10)
  • Abstract views(826)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return