Citation: Yun-Ze XU, Jin-Bei SHEN, Guo-Liang ZHAO, Wei-Ji HU. Syntheses, Crystal Structures and DNA-Binding of Two Manganese Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 285-294. doi: 10.11862/CJIC.2022.038 shu

Syntheses, Crystal Structures and DNA-Binding of Two Manganese Complexes

  • Corresponding author: Guo-Liang ZHAO, sky53@zjnu.cn
  • Received Date: 2 August 2021
    Revised Date: 18 December 2021

Figures(9)

  • Coordination polymer[Mn3(L)6(H2O)4]n (1) was prepared by the reaction of manganese chloride (MnCl2·4H2O) and 4-methyl-1, 2, 3-thiadiazole-5-carboxylic acid (HL) by conventional solution method, and complex[Mn2(phen)4(H2O)2Cl2](L)2·3H2O (2) was synthesized after adding the ligand 1, 10-phenanthroline (phen). The complexes were characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and singlecrystal X-ray diffraction. The single-crystal structure analysis shows that complex 1 belongs to the monoclinic system, P21/c space group. The three manganese ions are bridged in bidentate fashion by the oxygen atoms in the six thiadiazole formate groups to form a linear trinuclear molecule cluster compound. The cluster unit is connected by the coordination of nitrogen atom from one of the thiadiazole rings and the manganese atom of the other cluster unit to form a layered structure. Complex 2 belongs to the triclinic crystal system, P1 space group. The central metal manganese ion coordinated with four nitrogen atoms from two phen molecules, one chloride anion, and one oxygen atom of coordination water molecule respectively, forming a six-coordinated twisted octahedral structure cation. The thiadiazole formate anion plays the role of charge balance. Ethidium bromide fluorescence spectrometry was used to determine the interaction between HL and complexes with DNA, respectively. The results showed that the interaction between the complexes and DNA was stronger than that of HL, and complex 2 with a planar ligand had a stronger effect than that of complex 1.
  • 加载中
    1. [1]

      Gonzaga D T G, Oliveira F H, Von Ranke N L, Pinho G Q, Salles J P, Bello M L, Rodrigues C R, Castro H C, de Souza H V C M, Reis C R C, Leme R P P, Mafra J C M, Pinheiro L C S, Hoelz L V B, Boechat N, Faria R X. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New Thiadiazole Derivatives as Potent P2X7 Receptor Inhibitors[J]. Front. Chem., 2019,7261. doi: 10.3389/fchem.2019.00261

    2. [2]

      Fesatidou M, Petrou A, Athina G. Heterocycle Compounds with Antimicrobial Activity[J]. Curr. Pharm. Des., 2020,26(8):867-904. doi: 10.2174/1381612826666200206093815

    3. [3]

      Kashyap A, Adhikari N, Das A, Shakya A, Ghosh S K, Singh U P, Bhat H R. Review on Synthetic Chemistry and Antibacterial Importance of Thiazole Derivatives[J]. Curr. Drug Discovery Technol., 2018,15(3):214-228. doi: 10.2174/1570163814666170911144036

    4. [4]

      De A, Sarkar S, Majee A. Recent Advances on Heterocyclic Compounds with Antiviral Properties[J]. Chem. Heterocycl. Compd., 2021,57(4):410-416. doi: 10.1007/s10593-021-02917-3

    5. [5]

      CUI S F, WANG Y, LÜ J S, Damu Guri L V, ZHOU C H. Recent Advances in Application of Thiazole Compounds[J]. Scientia Sinica: Chimica, 2012,42(8):1105-1131.  

    6. [6]

      HU D Y, SONG B A, HE W, YANG S, JIN L H. Progresses in the Synthesis and Biological Activity of Thiazole Derivative[J]. Chinese Journal of Synthetic Chemistry, 2006,14(4):319-328.  

    7. [7]

      DAI H, LIU J B, ZHANG X, YU H B, QIN X, QIN Z F, WANG T T, FANG J X. Synthesis and Biological Activities of Novel Imine Derivatives Containing 2-Substituted-1, 3-thiazolidine and Thiazole Rings[J]. Chinese J. Org. Chem., 2009,29(1):123-127.  

    8. [8]

      Ayati A, Emami S, Moghimi S, Foroumadi A. Thiazole in the Targeted Anticancer Drug Discovery[J]. Future Med. Chem., 2019,11(15):1929-1952. doi: 10.4155/fmc-2018-0416

    9. [9]

      Seck I, Nguemo F. Triazole, Imidazole, and Thiazole-Based Compounds as Potential Agents Against Coronavirus[J]. Results Chem., 2021,3100132. doi: 10.1016/j.rechem.2021.100132

    10. [10]

      HUANG G, YANG J C, LI H C, ZHANG J, LIU C L. Research Progress on the Thiazole Derivatives as Agrochemicals[J]. Agrochemicals, 2011,50(2):79-82. doi: 10.3969/j.issn.1006-0413.2011.02.001

    11. [11]

      Wang T T, Bing G F, Zhang X, Qin Z F, Yu H B, Qin X, Dai H, Miao W K, Wu S S, Fang J X. Synthesis and Herbicidal Activities of 2-Cyano-3-benzylaminoacrylates Containing Thiazole Moiety[J]. Bioorg. Med. Chem. Lett., 2010,20(11):3348-3351. doi: 10.1016/j.bmcl.2010.04.027

    12. [12]

      Yu Z H, Shi D Q. Synthesis and Herbicidal Activity of α-Amino Phosphonate Derivatives Containing Thiazole and Pyrazole Moieties[J]. Phosphorus Sulfur Silicon Relat. Elem., 2010,185(8):1746-1752. doi: 10.1080/10426500903251373

    13. [13]

      Gopal L K, Kumar D A, Waquar A, Paranjeet , Manish V, Amit M, Kumar N S. A Retrospect Study on Thiazole Derivatives as the Potential Antidiabetic Agents in Drug Discovery and Developments[J]. Curr. Drug Disovery Technol., 2018,15(3):163-177. doi: 10.2174/1570163814666170915134018

    14. [14]

      Jain S, Pattnaik S, Pathak K, Kumar S, Pathak D, Jain S, Vaidya A. Anticancer Potential of Thiazole Derivatives: A Retrospective Review[J]. Mini-Rev. Med. Chem., 2018,18(8):640-655. doi: 10.2174/1389557517666171123211321

    15. [15]

      Pathania S, Narang R K, Rawal R K. Role of Sulphur-Heterocycles in Medicinal Chemistry: An Update[J]. Eur. J. Med. Chem., 2019,180:486-508. doi: 10.1016/j.ejmech.2019.07.043

    16. [16]

      Dang X, Lei S W, Luo S H, Hu Y X, Wang J T, Zhang D D, Lu D, Jiang F Q, Fu L. Design, Synthesis and Biological Evaluation of Novel Thiazole-Derivatives as Mitochondrial Targeting Inhibitors of Cancer Cells[J]. Bioorg. Chem., 2021,114105015. doi: 10.1016/j.bioorg.2021.105015

    17. [17]

      Bondock S, Nasr T, Alqahtanti S. Synthesis and In Vitro Antitumor Evaluation of Some Carbazole-Based Thiazole, Thiophene, and 1, 3, 4-Thiadiazole Derivatives[J]. ChemistrySelect, 2020,5(39):12087-12097. doi: 10.1002/slct.202002912

    18. [18]

      Kinga P, Łukasz P, Anna B, Anna B R, Anna M, Anna G, Monika W. Novel Derivatives of 4-Methyl-1, 2, 3-thiadiazole-5-carboxylic Acid Hydrazide: Synthesis, Lipophilicity, and In Vitro Antimicrobial Activity Screening[J]. Appl. Sci., 2021,111180. doi: 10.3390/app11031180

    19. [19]

      Suss O, Motiei L, Margulies D. Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions[J]. Molecules, 2021,26(9)2828. doi: 10.3390/molecules26092828

    20. [20]

      Giorgio M, Giuliano G, Andrea R. Thiazole- and Thiadiazole-Based Metal-Organic Frameworks and Coordination Polymers for Luminescent Applications[J]. Inorganics, 2019,7144. doi: 10.3390/inorganics7120144

    21. [21]

      YANG K D, ZHANG T B, WANG A G, DONG M J. Trace Elements and Health. Beijing: Science Press, 2003: 130-131

    22. [22]

      Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chem. Rev., 2011,112(2):933-969.

    23. [23]

      Ryu U J, Jee S Y, Rao P C, Shin J Y, Ko C Y, Yoon M Y, Park K S, Choi K M. Recent Advances in Process Engineering and Upcoming Applications of Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2021,426213544. doi: 10.1016/j.ccr.2020.213544

    24. [24]

      Odoh S O, Cramer C J, Truhlar D G, Gagliardi L. Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks[J]. Chem. Rev., 2015,115(12):6051-6111. doi: 10.1021/cr500551h

    25. [25]

      Haiduc I. ReviewInverse Coordination[J]. Organic Nitrogen Heterocycles as Coordination Centers. A Survey of Molecular Topologies and Systematization. Part 1. Five-Membered and Smaller Rings. J. Coord. Chem., 2019,72(13):2127-2159.

    26. [26]

      Dariusz K, Arkadiusz M, Daniel K, Bernadette C, Ewa C, Katarzyna L S, Karolina S. Structural Features of 1, 3, 4-Thiadiazole-Derived Ligands and Their Zn and Cu Complexes Which Demonstrate Synergistic Antibacterial Effects with Kanamycin[J]. Int. J. Mol. Sci., 2020,21(16)5735. doi: 10.3390/ijms21165735

    27. [27]

      Mallick A, El-Zohry A M, Shekhah O, Yin J, Jia J T, Aggarwal H, Emwas A H, Mohammed O F, Eddaoudi M. Unprecedented Ultralow Detection Limit of Amines Using a Thiadiazole-Functionalized Zr(Ⅳ)-Based Metal-Organic Framework[J]. J. Am. Chem. Soc., 2019,141(18):7245-7249. doi: 10.1021/jacs.9b01839

    28. [28]

      Anastasia K, Vladislava M, Dmitry P, Andrei Y, Andrei P. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties[J]. Materials, 2020,13(12)2699. doi: 10.3390/ma13122699

    29. [29]

      Bera P, Aher A, Brandao P, Manna S K, Mondal G, Jana A, Santra A, Jana H, Bera P. Induced Apoptosis Against U937 Cancer Cells by Fe(Ⅱ), Co(Ⅲ) And Ni(Ⅱ) Complexes with a Pyrazine-Thiazole Ligand: Synthesis, Structure and Biological Evaluation[J]. Polyhedron, 2020,182114503. doi: 10.1016/j.poly.2020.114503

    30. [30]

      Yan S L, Yang M Y, Sun Z H, Min L J, Tan C X, Weng J Q, Wu H K, Liu X H. Synthesis and Antifungal Activity of 1, 2, 3-Thiadiazole Derivatives Containing 1, 3, 4-Thiadiazole Moiety[J]. Lett. Drug Des. Discovery, 2014,11(7):940-943. doi: 10.2174/1570180811666140423222141

    31. [31]

      Scheldrick G M. SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.

    32. [32]

      Sheldrick G M. SHELXS 97, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1997.

    33. [33]

      Sheldrick G M. SHELXS 97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.

    34. [34]

      LI G F, WANG Y N, WANG Q W, LI X M, JI J Y. Synthesis and Crystal Structure of Two Complexes of Manganese, Cadmium Assembled by Bis(imidazol) Ligands[J]. Chinese J. Inorg. Chem., 2014,30(11):2577-2583.  

    35. [35]

      Zhang X F, Huang D G, Chen F, Chen C N, Liu Q T. Synthesis and Structural Characterization of[Mn(phen)2(H2O)2](OAc)2·6H2O[J]. Chin. J. Struct. Chem., 2003,22(5):525-528.

    36. [36]

      WANG Y G, LIU Q Q, ZHAI L X, QIAN H F, HUANG W. Structural and Spectral Studies of Cis Cadmium(Ⅱ), Manganese(Ⅱ) and Nickel(Ⅱ) Complexes Having 2-Thiophenimidazo[4, 5-f] [1, 10] phenanthroline and 2-(5-Bromothiophen)imidazo[4, 5-f] [1, 10] phenanthroline Ligands[J]. Chinese J. Inorg. Chem., 2013,29(8):1687-1695.  

    37. [37]

      Nakamoto K. Infrared and Raman Spestra of Inorganic and Coordination Compounds. Translated by HUANG D R. Beijing: Chemistry Industry Press, 1986: 231-234

    38. [38]

      WU D L, ZHANG M Z, WU X Y, ZHAO G L. Syntheses, Crystal Structures and DNA-Binding of Two Zinc Complexes Constructed by 4-Methyl-1, 2, 3-thiadiazol-5-carboxylic Acid[J]. Chinese J. Inorg. Chem., 2018,34(5):973-980.  

    39. [39]

      Lakowicz J R, Weber G. Quenching of Fluorescence by Oxygen[J]. Probe for Structural Fluctuations in Macromolecules. Biochemistry, 1973,12(21):4161-4170.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(13)
  • Abstract views(1143)
  • HTML views(324)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return