Citation: An-Ran WU, Yan-Hui CHEN, Xin-Xin WANG, Wen-Yuan ZHOU, Jia-Wei HE, Jin-Shu WANG, Hong-Yi LI. Pt/TiO2 Nanotubes Electrode: Preparation by Electroplating Method and Electrocatalytic Hydrogen Evolution Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 227-236. doi: 10.11862/CJIC.2022.034 shu

Pt/TiO2 Nanotubes Electrode: Preparation by Electroplating Method and Electrocatalytic Hydrogen Evolution Performance

  • Corresponding author: Hong-Yi LI, lhy06@bjut.edu.cn
  • Received Date: 1 April 2021
    Revised Date: 14 December 2021

Figures(15)

  • Here, Pt modified anatase-type titanium dioxide (TiO2) nanotube arrays were prepared by electroplating method for a low-platinum Pt/TiO2 nanotubes electrode (Pt/TiO2-NTs). By contrast, we fixed Pt on TiO2 dense film by the same procedure as a control sample (Pt/TiO2-F). The scanning electron microscopy and transmission electron microscopy observation showed that Pt nanoparticles were distributed uniformly in nanotube arrays, and Pt/TiO2-NTs showed a higher efficiency in electrocatalytic hydrogen evolution compared with Pt/TiO2-F and commercial Pt/C catalyst, in which the overpotential of Pt/TiO2-NTs was 0.079 V, the Tafel slope was 42.7 mV·dec-1 at 10 mA·cm-2. The catalytic activity of 3 000 cycles duration stability test results showed that Pt/TiO2-NTs exhibited excellent stability compared with the above contrast electrodes.
  • 加载中
    1. [1]

      LU S Q, Zhuang Z B. Electrocatalysts for Hydrogen Oxidation and Evolution Reactions[J]. Sci. China Mater., 2016,59(3):217-238. doi: 10.1007/s40843-016-0127-9

    2. [2]

      Barelli L, Bidini G, Gallorini F, Servili S. Hydrogen Production through Sorption-Enhanced Steam Methane Reforming and Membrane Technology: A Review[J]. Energy, 2008,33(4):554-570. doi: 10.1016/j.energy.2007.10.018

    3. [3]

      Gong S Q, Jiang Z J, Shi P H, Fan J C, Xu Q J, Min Y L. Noble-Metal-Free Heterostructure for Efficient Hydrogen Evolution in Visible Region: Molybdenum Nitride/Ultrathin Graphitic Carbon Nitride[J]. Appl. Catal. B, 2018,238(15):318-327.

    4. [4]

      Carmo M, Fritz D L, Mergel J, Stolten D. A Comprehensive Review on PEM Water Electrolysis[J]. Int. J. Hydrogen Energy, 2013,38(12):4901-4934. doi: 10.1016/j.ijhydene.2013.01.151

    5. [5]

      Hong W T, Jian C Y, Wang G X, He X, Li J, Cai Q, Wen Z H, Liu W. Self-Supported Nanoporous Cobalt Phosphosulfate Electrodes for Efficient Hydrogen Evolution Reaction[J]. Appl. Catal. B, 2019,251(15):213-219.

    6. [6]

      Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design[J]. Science, 2017,355(6321):4998-5012. doi: 10.1126/science.aad4998

    7. [7]

      Li H Y, Wang J S, Liu M, Wang H, Su P L, Wu J S, Li J. A Nanoporous Oxide Interlayer Makes a Better Pt Catalyst on a Metallic Substrate: Nanoflowers on a Nanotube Bed[J]. Nano Res., 2014,7(7):1007-1017. doi: 10.1007/s12274-014-0464-5

    8. [8]

      Haneda M, Watanabe T, Ozawa M. Characterization and Reactivity Analysis of Hydrogen Adspecies on Platinum Nano-Particles Supported on Alumina[J]. J. Jpn. Pet. Inst., 2012,55(3):191-196. doi: 10.1627/jpi.55.191

    9. [9]

      Cherevko S, Topalov A A, Zeradjanin A R, Keeley G P, Mayrhofer K J J. Temperature-Dependent Dissolution of Polycrystalline Platinum in Sulfuric Acid Electrolyte[J]. Electrocatalysis, 2014,5(3):235-240. doi: 10.1007/s12678-014-0187-0

    10. [10]

      Xing L Y, Hossain M A, Min T, Beauchemin D, Adjemian K T, Jerkiewicz G. Platinum Electro-Dissolution in Acidic Media upon Potential Cycling[J]. Electrocatalysis, 2014,5(1):96-112. doi: 10.1007/s12678-013-0167-9

    11. [11]

      Dong G F, Fang M, Wang H T, Yip S P, Cheung H Y, Wang F Y, Wong C Y, Chu S T, Ho J C. Insight into the Electrochemical Activation of Carbon-Based Cathodes for Hydrogen Evolution Reaction[J]. J. Mater. Chem. A, 2015,3(24):13080-13086. doi: 10.1039/C5TA02551F

    12. [12]

      Li J, Liu H Y, Lu Y, Guo X W, Song Y J. Influence of Counter Electrode Material during Accelerated Durability Test of Non-precious Metal Electrocatalysts in Acidic Medium[J]. Chin. J. Catal., 2016,37(7):1109-1118. doi: 10.1016/S1872-2067(16)62454-3

    13. [13]

      Fang Y Y, Hsieh Y C, Lin C W. Electroplating of Nanostructured Pt, Ir and Pt-Ir at Room Temperature[J]. J. Electrochem. Soc., 2012,159(9):D518-D520. doi: 10.1149/2.003209jes

    14. [14]

      Tachibana T, Yokota Y, Hayashi K, Kobashi K. Growth of {111}-Oriented Diamond on Pt/Ir/Pt Substrate Deposited on Sapphire[J]. Diamond Relat. Mater., 2001,10(9/10):1633-1636.

    15. [15]

      Cheng X, Li Y, Zheng L, Yan Y, Zhang Y F, Chen G, Sun S R, Zhang J J. Highly Active, Stable Oxidized Platinum Clusters as Electrocatalysts for the Hydrogen Evolution Reaction[J]. Energy Environ. Sci., 2017,10(11):2450-2458. doi: 10.1039/C7EE02537H

    16. [16]

      Cheng H, Wang G, Parrondo J, Sankarasubramanian S, Ramani V. Pt/RuO2-TiO2 Electrocatalysts Exhibit Excellent Hydrogen Evolution Activity in Alkaline Media[J]. J. Electrochem. Soc., 2017,164(12):F1234-F1240. doi: 10.1149/2.1661712jes

    17. [17]

      Anitha V C, Raul Z, Milos K, Yoo J E, Sopha H, Prikryl J, Cha G, Slang S, Schmuki P, Macak J M. Anodic TiO2 Nanotubes Decorated by Pt Nanoparticles Using ALD: An Efficient Electrocatalyst for Methanol Oxidation[J]. J. Catal., 2018,365:86-93. doi: 10.1016/j.jcat.2018.06.017

    18. [18]

      Cheshideh H, Nasirpouri F. Cyclic Voltammetry Deposition of Nickel Nanoparticles on TiO2 Nanotubes and Their Enhanced Properties for Electro-Oxidation of Methanol[J]. J. Electroanal. Chem., 2017,797:121-133. doi: 10.1016/j.jelechem.2017.05.024

    19. [19]

      Yoo J E, Zazpe R, Cha G, Prikryl J, Hwang I, Macak J M, Schmuki P. Uniform ALD Deposition of Pt Nanoparticles within 1D Anodic TiO2 Nanotubes for Photocatalytic H2 Generation[J]. Electrochem. Commun., 2018,86:6-11.

    20. [20]

      Lv L W, Liu Y S, Zhang P, Zhang X, Liu J, Chen T, Su P L, Li H Y, Zhou Y S. The Nanoscale Geometry of TiO2 Nanotubes Influences the Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Modulating H3K4 Trimethylation[J]. Biomaterials, 2015,39:193-205. doi: 10.1016/j.biomaterials.2014.11.002

    21. [21]

      Jiao P, Li H Y, Zu G N, Zu G N, Li P P, Wu J S, Wang J S. Tribological Properties of MoS2 Nanosheets Solid Lubricant Planted on TiO2 Nanotube Array Bed[J]. Tribol. Int., 2018,125:12-16. doi: 10.1016/j.triboint.2018.04.008

    22. [22]

      Ozkan S, Yoo J E, Nguyen N T, Nguyen N T, Mohajernia S, Zazpe R, Prikryl J, Macak J M, Schmuki P. Spaced TiO2 Nanotubes Enable Optimized Pt Atomic Layer Deposition for Efficient Photocatalytic H2 Generation[J]. Chemistryopen, 2018,7(10):797-802. doi: 10.1002/open.201800172

    23. [23]

      Li H Y, Liu S J, Wang X X, Zu G N, Li D D, Wang J S. Platinum Nano-Flowers with Controlled Facet Planted in Titanium Dioxide Nanotube Arrays Bed and Their High Electro-catalytic Activity[J]. Sustainable Mater. Technol., 2019,20:93-101.

    24. [24]

      Zu G N, Li H Y, Jiao P, Li P P, Wang X X, Wang J S. Effect of TiO2 Nanotube Arrays Morphology/Structure on Photocatalytic Hydrogen Production[J]. J. Nanosci. Nanotechnol., 2020,20(2):852-857. doi: 10.1166/jnn.2020.16945

    25. [25]

      Li B S, Anwer S, Huang X H, Luo S H, Fu J, Liao K. Nitrogen-Doped Carbon Encapsulated in Mesoporous TiO2 Nanotubes for Fast Capacitive Sodium Storage[J]. J. Energy Chem., 2021,55:202-210. doi: 10.1016/j.jechem.2020.06.074

    26. [26]

      Zu G N, Li H Y, Liu S J, Li D D, Wang J S, Zhao J L. Highly Efficient Mass Determination of TiO2 Nanotube Arrays and Its Application in Lithium-Ion Batteries[J]. Sustainable Mater. Technol., 2018,18:79-86.

    27. [27]

      Parkinson C R, Walker M, Mcconville C F. Reaction of Atomic Oxygen with a Pt(111) Surface: Chemical and Structural Determination Using XPS, CAICISS and LEED[J]. Surf. Sci., 2003,545:19-33. doi: 10.1016/j.susc.2003.08.029

    28. [28]

      Xu G Q, Liu H P, Wang J W, Lv J, Zheng Z X, Wu Y C. Photoelectrochemical Performances and Potential Applications of TiO2 Nano-tube Arrays Modified with Ag and Pt Nanoparticles[J]. Electrochim. Acta, 2014,121:194-202. doi: 10.1016/j.electacta.2013.12.154

    29. [29]

      Su Y, Deng Y. Effect of Structure on the Photocatalytic Activity of Pt-Doped TiO2 Nanotubes[J]. Appl. Surf. Sci., 2011,257(23):9791-9795. doi: 10.1016/j.apsusc.2011.05.133

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(19)
  • Abstract views(1327)
  • HTML views(474)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return