Citation: Dong HAN, Tao MA, Tian-Jiang SUN, Wei-Jia ZHANG, Zhan-Liang TAO. Zinc Anode Protection Strategy for Aqueous Zinc-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 185-197. doi: 10.11862/CJIC.2022.031 shu

Zinc Anode Protection Strategy for Aqueous Zinc-Ion Batteries

  • Corresponding author: Zhan-Liang TAO, taozhl@nankai.edu.cn
  • Received Date: 14 October 2021
    Revised Date: 27 November 2021

Figures(9)

  • Aqueous zinc-ion batteries have advantages in terms of being environmentally friendly and safe with zinc metal anode, which is considered a promising rechargeable battery for large-scale storage energy systems. Zinc metal is more abundant than lithium and easier to be mined and purified. Meanwhile, it shows a low redox potential (-0.76V vs SHE), high theoretical specific capacity (820 mAh·g-1), and high theoretical volumetric capacity (5 854 mAh·cm-3). However, the problems of zinc dendrites and irreversible by-products (such as H2, ZnO, Zn4(OH)6SO4) on the surface of Zn metal during the charging and discharging processes lead to the low coulombic efficiency of the zinc anode, which seriously shorten the cycle life of the zinc-ion battery and limit its practical application. Herein, the difficulties and bottlenecks encountered in the practical application of zinc anode are sorted out, in addition, dynamics and thermodynamic mechanisms are tried to analyze from the microscopic level. Subsequently, various strategies are introduced to improve the performance of zinc anode from the aspects of the surface modification technology of the zinc electrode, the optimization of the zinc internal structure, electrolyte modification, and novel functional separator. The preparation methods, modification mechanism as well as final improvement effect on the battery performance are analyzed, which provide new insights into the practical and efficient zinc anode protection method. Finally, the opportunities and challenges faced by zinc anode in the process of commercialization are discussed, and the future research prospects and hot spots are prospected.
  • 加载中
    1. [1]

      Kittner N, Lill F, Kammen D M. Energy Storage Deployment and Innovation for the Clean Energy Transition[J]. Nature Energy, 2017,217125. doi: 10.1038/nenergy.2017.125

    2. [2]

      Evarts E C. Lithium Batteries: To the Limits of Lithium[J]. Nature, 2015,526:S93-S95. doi: 10.1038/526S93a

    3. [3]

      Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K. Aqueous Rechargeable Li and Na Ion Batteries[J]. Chem. Rev., 2014,114:11788-11827. doi: 10.1021/cr500232y

    4. [4]

      Huang J H, Guo Z W, Ma Y Y, Bin D, Wang Y G, Xia Y Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes[J]. Small Methods, 2019,31800272. doi: 10.1002/smtd.201800272

    5. [5]

      Fang G Z, Zhou J, Pan A Q, Liang S Q. Recent Advances in Aqueous Zinc-Ion Batteries[J]. ACS Energy Lett., 2018,3:2480-24501. doi: 10.1021/acsenergylett.8b01426

    6. [6]

      Feng Y Z, Zhang Q, Liu S, Liu J, Tao Z L, Chen J. A Novel Aqueous Sodium-Manganese Battery System for Energy Storage[J]. J. Mater. Chem. A, 2019,7:8122-8128. doi: 10.1039/C9TA00474B

    7. [7]

      Yu Y X, Xie J H, Zhang H Z, Qin R F, Liu X Q, Lu X H. High-Voltage Rechargeable Aqueous Zinc-Based Batteries: Latest Progress and Future Perspectives[J]. Small Sci., 2021,12000066. doi: 10.1002/smsc.202000066

    8. [8]

      Du W C, Ang E H, Yang Y, Zhang Y F, Ye M H, Li C C. Challenges in the Material and Structural Design of Zinc Anode towards High-Performance Aqueous Zinc-Ion Batteries[J]. Energy Environ. Sci., 2020,13:3330-3360. doi: 10.1039/D0EE02079F

    9. [9]

      Shin J, Lee J, Park Y, Choi J W. Aqueous Zinc Ion Batteries: Focus on Zinc Metal Anodes[J]. Chem. Sci., 2020,11:2028-2044. doi: 10.1039/D0SC00022A

    10. [10]

      Askar M H, Abbas H, Afifi S E. Rechargeability of Manganese Dioxide/Zinc Cell Using Zinc Sulfate Electrolyte[J]. J. Power Sources, 1994,48:303-309. doi: 10.1016/0378-7753(94)80027-8

    11. [11]

      Li Y G, Gong M, Liang Y Y, Feng J, Kim J E, Wang H L, Hong G S, Zhang B, Dai H J. Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts[J]. Nat. Commun., 2013,41805. doi: 10.1038/ncomms2812

    12. [12]

      Mainar R, Leonet A, Bengoechea O, Boyano M, de Meatza I, Kvasha I, Guerfi A, Blázquez J A. Alkaline Aqueous Electrolytes for Secondary Zinc-Air Batteries: An Overview[J]. Int. J. Energy Res., 2016,40:1032-1049. doi: 10.1002/er.3499

    13. [13]

      Yamamoto T, Shoji T. Rechargeable Zn|ZnSO4|MnO2-Type Cells[J]. Inorg. Chim. Acta, 1986,117:L27-L28. doi: 10.1016/S0020-1693(00)82175-1

    14. [14]

      Sun T J, Nian Q S, Zheng S B, Yuan X M, Tao Z L. Water Cointerca-lation for High-Energy-Density Aqueous Zinc-Ion Battery Based Potassium Manganite Cathode[J]. J. Power Sources, 2020,478228758. doi: 10.1016/j.jpowsour.2020.228758

    15. [15]

      Jia H, Wang Z Q, Tawiah B, Wang Y D, Chan C Y, Fei B, Pan F. Recent Advances in Zinc Anodes for High-Performance Aqueous Zn-Ion Batteries[J]. Nano Energy, 2020,70104523. doi: 10.1016/j.nanoen.2020.104523

    16. [16]

      Cao Z Y, Zhuang P Y, Zhang X, Ye M X, Shen J F, Ajayan P M. Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries[J]. Adv. Energy Mater., 2020,102001599. doi: 10.1002/aenm.202001599

    17. [17]

      Yang Q, Bang G J, Guo Y, Liu Z X, Yan B X, Wang D H, Huang Z D, Li X L, Fan J, Zhi C Y. Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue in-Service Batteries[J]. Adv. Mater., 2019,31e1903778. doi: 10.1002/adma.201903778

    18. [18]

      Han C, Li W J, Liu H K, Dou S X, Wang J Z. Principals and Strategies for Constructing a Highly Reversible Zinc Metal Anode in Aqueous Batteries[J]. Nano Energy, 2020,74104880. doi: 10.1016/j.nanoen.2020.104880

    19. [19]

      Bayaguud A, Fu Y P, Zhu C B. Interfacial Parasitic Reactions of Zinc Anodes in Zinc Ion Batteries: Underestimated Corrosion and Hydrogen Evolution Reactions and Their Suppression Strategies[J]. J. Energy Chem., 2022,64:246-262. doi: 10.1016/j.jechem.2021.04.016

    20. [20]

      Hao J N, Li B, Li X L, Zeng X H, Zhang S L, Yang F, Liu S L, Li D, Wu C, Guo Z P. An in-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries[J]. Adv. Mater., 2020,322003021. doi: 10.1002/adma.202003021

    21. [21]

      Zhang Q, Luan J Y, Tang Y G, Ji X B, Wang H Y. Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries[J]. Angew. Chem. Int. Ed., 2020,59:13180-13191. doi: 10.1002/anie.202000162

    22. [22]

      Su L J, Liu L Y, Liu B, Meng J N, Yan X B. Revealing the Impact of Oxygen Dissolved in Electrolytes on Aqueous Zinc-Ion Batteries[J]. iScience, 2020,23100995. doi: 10.1016/j.isci.2020.100995

    23. [23]

      Kasemchainan J, Zekoll S, Jolly D S, Ning Z, Hartley G O, Marrow J, Bruce P G. Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells[J]. Nat. Mater., 2019,18:1105-1111. doi: 10.1038/s41563-019-0438-9

    24. [24]

      Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X T, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Reversible Epitaxial Electrodeposition of Metals in Battery Anodes[J]. Science, 2019,366:645-648. doi: 10.1126/science.aax6873

    25. [25]

      Wang J W, Yang Y, Zhang Y X, Li Y M, Sun R, Wang Z C, Wang H. Strategies towards the Challenges of Zinc Metal Anode in Rechargeable Aqueous Zinc Ion Batteries[J]. Energy Storage Mater., 2021,35:19-46. doi: 10.1016/j.ensm.2020.10.027

    26. [26]

      He H B, Tong H, Song X Y, Song X P, Liu J. Highly Stable Zn Metal Anodes Enabled by Atomic Layer Deposited Al2O3 Coating for Aqueous Zinc-Ion Batteries[J]. J. Mater. Chem. A, 2020,8:7836-7846. doi: 10.1039/D0TA00748J

    27. [27]

      Han D L, Wu S C, Zhang S W, Deng Y Q, Cui C J, Zhang L N, Long Y, Li H, Tao Y, Weng Z, Yang Q H, Kang F Y. A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems[J]. Small, 2020,16e2001736. doi: 10.1002/smll.202001736

    28. [28]

      Liang P C, Yi J, Liu X Y, Wu K, Wang Z, Cui J, Liu Y Y, Wang Y G, Xia Y Y, Zhang J J. Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries[J]. Adv. Funct. Mater., 2020,301908528. doi: 10.1002/adfm.201908528

    29. [29]

      Li B, Xue J, Han C, Liu N, Ma K X, Zhang R C, Wu X W, Dai L, Wang L, He Z X. A Hafnium Oxide-Coated Dendrite-Free Zinc Anode for Rechargeable Aqueous Zinc-Ion Batteries[J]. J. Colloid Interface Sci., 2021,599:467-475. doi: 10.1016/j.jcis.2021.04.113

    30. [30]

      Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries[J]. Adv. Energy Mater., 2018,81801090. doi: 10.1002/aenm.201801090

    31. [31]

      Deng C B, Xie X S, Han J W, Tang Y, Gao J W, Liu C X, Shi X D, Zhou J, Liang S Q. A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode[J]. Adv. Funct. Mater., 2020,302000599. doi: 10.1002/adfm.202000599

    32. [32]

      Yang Q, Guo Y, Yan B X, Wang C D, Liu Z X, Huang Z D, Wang Y K, Li Y R, Li H F, Song L, Fan J, Zhi C Y. Hydrogen-Substituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercial-Grade Dendrite-Free Zinc Anodes[J]. Adv. Mater., 2020,32e2001755. doi: 10.1002/adma.202001755

    33. [33]

      Hao J N, Li X L, Zhang S L, Yang F H, Zeng X H, Zhang S, Bo G Y, Wang C S, Guo Z P. Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries[J]. Adv. Funct. Mater., 2020,302001263. doi: 10.1002/adfm.202001263

    34. [34]

      Yang Y, Liu C Y, Lv Z H, Yang H, Zhang Y F, Ye M H, Chen L B, Zhao J B, Li C C. Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long-Lifespan and Dendrite-Free Zn Metal Anodes[J]. Adv. Mater., 2021,33e2007388. doi: 10.1002/adma.202007388

    35. [35]

      Cao Z Y, Zhu X D, Xu D X, Dong P, Chee M O L, Li X J, Zhu K Y, Ye M X, Shen J F. Eliminating Zn Dendrites by Commercial Cyanoacrylate Adhesive for Zinc Ion Battery[J]. Energy Storage Mater., 2021,36:132-138. doi: 10.1016/j.ensm.2020.12.022

    36. [36]

      Tian Y, An Y L, Liu C K, Xiong S L, Feng J K, Qian Y T. Reversible Zinc-Based Anodes Enabled by Zincophilic Antimony Engineered Mxene for Stable and Dendrite-Free Aqueous Zinc Batteries[J]. Energy Storage Mater., 2021,41:343-353. doi: 10.1016/j.ensm.2021.06.019

    37. [37]

      Zeng Y X, Zhang X Y, Qin R F, Liu X Q, Fang P P, Zheng D Z, Tong Y X, Lu X H. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries[J]. Adv. Mater., 2019,31e1903675. doi: 10.1002/adma.201903675

    38. [38]

      Zhou M, Guo S, Li J L, Luo X B, Liu Z X, Zhang T S, Cao X X, Long M Q, Lu B A, Pan A Q, Fang G Z, Zhou J, Liang S Q. Surface-Preferred Crystal Plane for a Stable and Reversible Zinc Anode[J]. Adv. Mater., 2021,33e2100187. doi: 10.1002/adma.202100187

    39. [39]

      Guo S, Qin L P, Zhang T S, Zhou M, Zhou J, Fang G Z, Liang S Q. Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc-Ion Batteries[J]. Energy Storage Mater., 2021,34:545-562. doi: 10.1016/j.ensm.2020.10.019

    40. [40]

      Xu W N, Zhao K N, Huo W C, Wang Y Z, Yao G, Gu X, Cheng H W, Mai L Q, Hu C G, Wang X D. Diethyl Ether as Self-Healing Electrolyte Additive Enabled Long-Life Rechargeable Aqueous Zinc Ion Batteries[J]. Nano Energy, 2019,62:275-281. doi: 10.1016/j.nanoen.2019.05.042

    41. [41]

      Guo X X, Zhang Z Y, Li J W, Luo N J, Chai G L, Miller T S, Lai F L, Shearing P, Brett D J L, Han D L, Weng Z, He G J, Parkin I P. Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives[J]. ACS Energy Lett., 2021,6:395-403. doi: 10.1021/acsenergylett.0c02371

    42. [42]

      Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive[J]. Angew. Chem. Int. Ed., 2021,60:18247-18255. doi: 10.1002/anie.202105756

    43. [43]

      Wang F, Borodin O, Gao T, Fan X, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Highly Reversible Zinc Metal Anode for Aqueous Batteries[J]. Nat. Mater., 2018,17:543-549. doi: 10.1038/s41563-018-0063-z

    44. [44]

      Shi J Q, Sun T J, Bao J Q, Zheng S B, Du H H, Li L, Yuan X M, Ma T, Tao Z L. "Water-in-Deep Eutectic Solvent" Electrolytes for High-Performance Aqueous Zn-Ion Batteries[J]. Adv. Funct. Mater., 2021,312102035. doi: 10.1002/adfm.202102035

    45. [45]

      Han Q, Chi X W, Liu Y Z, Wang L, Du Y X, Ren Y, Liu Y. An Inorganic Salt Reinforced Zn2+-Conducting Solid-State Electrolyte for Ultra-Stable Zn Metal Batteries[J]. J. Mater. Chem. A, 2019,7:22287-22295. doi: 10.1039/C9TA07218G

    46. [46]

      Gao J W, Xie X S, Liang S Q, Lu B A, Zhou J. Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries[J]. Nano-Micro Lett., 2021,1369. doi: 10.1007/s40820-021-00595-6

    47. [47]

      Li C P, Xie X S, Liu H, Wang P J, Deng C B, Lu B G, Zhou J, Liang S Q. Integrated 'All-in-One' Strategy to Stabilize Zinc Anodes for High-Performance Zinc-Ion Batteries[J]. Natl. Sci. Rev., 2021. doi: 10.1093/nsr/nwab177 

    48. [48]

      Cao J, Zhang D D, Gu C, Wang X, Wang S M, Zhang X Y, Qin J Q, Wu Z S. Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-Free Zinc Ion Batteries[J]. Adv. Energy Mater., 2021,112101299. doi: 10.1002/aenm.202101299

    49. [49]

      Li C, Sun Z T, Yang T, Yu L H, Wei N, Tian Z N, Cai J S, Lv J Z, Shao Y L, Rümmeli M H, Sun J Y, Liu Z F. Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes[J]. Adv. Mater., 2020,32e2003425. doi: 10.1002/adma.202003425

    50. [50]

      Ma L T, Chen S M, Li N, Liu Z X, Tang Z J, Zapien J A, Chen S M, Fan J, Zhi C Y. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries[J]. Adv. Mater., 2020,32e1908121. doi: 10.1002/adma.201908121

    51. [51]

      Lee B S, Cui S, Xing X, Liu H, Yue X, Petrova V, Lim H D, Chen R, Liu P. Dendrite Suppression Membranes for Rechargeable Zinc Batteries[J]. ACS Appl. Mater. Interfaces, 2018,10:38928-38935. doi: 10.1021/acsami.8b14022

    52. [52]

      Zhang Y, Wan F, Huang S, Wang S, Niu Z Q, Chen J. A Chemically Self-Charging Aqueous Zinc-Ion Battery[J]. Nat. Commun., 2020,112199. doi: 10.1038/s41467-020-16039-5

    53. [53]

      Sun T J, Zheng S B, Du H H, Tao Z L. Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery[J]. Nano-Micro Lett., 2021,13204. doi: 10.1007/s40820-021-00733-0

    54. [54]

      Sun T J, Du H H, Zheng S B, Shi J Q, Tao Z L. High Power and Energy Density Aqueous Proton Battery Operated[J]. Adv. Funct. Mater., 2021,312010127. doi: 10.1002/adfm.202010127

    55. [55]

      Nian Q S, Sun T J, Liu S, Du H H, Ren X D, Tao Z L. Issues and Opportunities on Low-Temperature Aqueous Batteries[J]. Chem. Eng. J., 2021,423130253. doi: 10.1016/j.cej.2021.130253

    56. [56]

      Hong Z J, Ahmad Z, Viswanathan V. Design Principles for Dendrite Suppression with Porous Polymer/Aqueous Solution Hybrid Electrolyte for Zn Metal Anodes[J]. ACS Energy Lett., 2020,5:2466-2474. doi: 10.1021/acsenergylett.0c01235

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(217)
  • Abstract views(3902)
  • HTML views(2174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return