Citation: Le-Heng HUANG, Gao CHENG, Ying-Xia ZHAO, Qi-Xing XIE, Yue SUN, Shi-Chang TANG, Ming SUN, Lin YU. Crystalline Form Controlled Synthesis of MnO2 Nanoarrays for Electrocatalytic Oxygen Evolution Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 333-343. doi: 10.11862/CJIC.2022.030 shu

Crystalline Form Controlled Synthesis of MnO2 Nanoarrays for Electrocatalytic Oxygen Evolution Performance

  • Corresponding author: Lin YU, gych@gdut.edu.cn
  • Received Date: 29 August 2021
    Revised Date: 7 December 2021

Figures(8)

  • Two kinds of MnO2 nanoarrays, including α-MnO2 nanowires and δ-MnO2 nanosheets, were synthesized on carbon fiber paper (CFP) via the one-step hydrothermal method by changing the temperature and the addition of sulfuric acid, respectively. Moreover, the oxygen evolution reaction (OER) properties for the MnO2 nanoarrays were studied. The results showed that the performance of α-MnO2 nanowires outperformed δ-MnO2 nanosheets in alkaline medium and the overpotential of α-MnO2 was 444 mV under 10 mA·cm-2 current density (the overpotential of δ-MnO2 was 522 mV). According to the analysis of X-ray photoelectron spectroscopy, the higher content of Mn3+ and more abundant oxygen vacancies on the surface are the reasons for the higher catalytic activity of α-MnO2 nanowires.
  • 加载中
    1. [1]

      Anantharaj S, Aravindan V. Developments and Perspectives in 3d Transition-Metal-Based Electrocatalysts for Neutral and Near-Neutral Water Electrolysis[J]. Adv. Energy Mater., 2019,10(1)1902666.

    2. [2]

      Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z J. A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts[J]. Chem. Soc. Rev., 2020,49(7):2196-2214. doi: 10.1039/C9CS00607A

    3. [3]

      Zeng K, Zheng X J, Li C, Yan J, Tian J H, Jin C, Strasser P, Yang R Z. Recent Advances in Non-Noble Bifunctional Oxygen Electrocatalysts toward Large-Scale Production[J]. Adv. Funct. Mater., 2020,30(27)2000503. doi: 10.1002/adfm.202000503

    4. [4]

      Cai Z, Bi Y M, Hu E Y, Liu W, Dwarica N, Tian Y, Li X L, Kuang Y, Li Y P, Yang X Q, Wang H L, Sun X M. Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis[J]. Adv. Energy Mater., 2018,8(3)1701694. doi: 10.1002/aenm.201701694

    5. [5]

      He K, Tadesse T T, Liu X, Zai J T, Li X H, Liu X J, Li W H, Ali N, Qian X F. Utilizing the Space-Charge Region of the FeNi-LDH/CoP p-n Junction to Promote Performance in Oxygen Evolution Electrocatalysis[J]. Angew. Chem. Int. Ed., 2019,58(34):11903-11909. doi: 10.1002/anie.201905281

    6. [6]

      Li X L, Lei H T, Liu J Y, Zhao X L, Ding S P, Zhang Z Y, Tao X X, Zhang W, Wang W C, Zheng X H, Cao R. Carbon Nanotubes with Cobalt Corroles for Hydrogen and Oxygen Evolution in pH 0-14 Solutions[J]. Angew. Chem. Int. Ed., 2018,57(46):15070-15075. doi: 10.1002/anie.201807996

    7. [7]

      Gao S S, Liu Y F, Xie Z Y, Qiu Y, Zhuo L C, Qin Y J, Ren J Q, Zhang S S, Hu G Z, Luo J, Liu X J. Metal-Free Bifunctional Ordered Mesoporous Carbon for Reversible Zn-CO2 Batteries[J]. Small Methods, 2021,5(4)2001039. doi: 10.1002/smtd.202001039

    8. [8]

      Liu H X, Peng X Y, Liu X J, Qi G C, Luo J. Porous Mn-Doped FeP/Co3(PO4)2 Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range[J]. ChemSusChem, 2019,12(7):1334-1341. doi: 10.1002/cssc.201802437

    9. [9]

      Abrashev M V, Chernev P, Kubella P, Mohammadi M R, Pasquini C, Dau H, Zaharieva I. Origin of the Heat-Induced Improvement of Catalytic Activity and Stability of MnOx Electrocatalysts for Water Oxidation[J]. J. Mater. Chem. A, 2019,7(28):17022-17036. doi: 10.1039/C9TA05108B

    10. [10]

      Hang Y, Zhang C F, Luo X M, Xie Y S, Xin S, Li Y T, Zhang D W, Goodenough J B. α-MnO2 Nanorods Supported on Porous Graphitic Carbon Nitride as Efficient Electrocatalysts for Lithium-Air Batteries[J]. J. Power Sources, 2018,392:15-22. doi: 10.1016/j.jpowsour.2018.04.078

    11. [11]

      Guo C, Zhou Q H, Liu H M, Tian S, Chen B L, Zhao J, Li J F. A Case Study of β- and δ-MnO2 with Different Crystallographic Forms on Ion-Storage in Rechargeable Aqueous Zinc Ion Battery[J]. Electrochim. Acta, 2019,324134867. doi: 10.1016/j.electacta.2019.134867

    12. [12]

      Cheng H, Xie J, Cao G S, Lu Y H, Zheng D, Jin Y, Wang K Y, Zhao X B. Realizing Discrete Growth of Thin Li2O2 Sheets on Black Phosphorus Quantum Dots-Decorated δ-MnO2 Catalyst for Long-Life Lithium-Oxygen Cells[J]. Energy Storage Mater., 2019,23:684-692. doi: 10.1016/j.ensm.2019.02.028

    13. [13]

      Li A L, Ooka H, Bonnet N, Hayashi T, Sun Y M, Jiang Q K, Li C, Han H X, Nakamura R. Stable Potential Windows for Long-Term Electrocatalysis by Manganese Oxides Under Acidic Conditions[J]. Angew. Chem. Int. Ed., 2019,58(15):5054-5058. doi: 10.1002/anie.201813361

    14. [14]

      Meng Y T, Song W Q, Huang H, Ren Z, Chen S Y, Suib S L. Structure-Property Relationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media[J]. J. Am. Chem. Soc., 2014,136(32):11452-11464. doi: 10.1021/ja505186m

    15. [15]

      Gupta P K, Bhandari A, Saha S, Bhattacharya J, Pala R G S. Modulating Oxygen Evolution Reactivity in MnO2 through Polymorphic Engineering[J]. J. Phys. Chem. C, 2019,123(36):22345-22357. doi: 10.1021/acs.jpcc.9b05823

    16. [16]

      Liang C W, Zou P C, Nairan A, Zhang Y Q, Liu J X, Liu K W, Hu S Y, Kang F Y, Fan H J, Yang C. Exceptional Performance of Hierarchical Ni-Fe Oxyhydroxide@NiFe Alloy Nanowire Array Electrocatalysts for Large Current Density Water Splitting[J]. Energy Environ. Sci., 2020,13(1):86-95. doi: 10.1039/C9EE02388G

    17. [17]

      SUN Z Y, CAO S, HUANG X Q, FAN X M, YANG Z H, ZHANG W X. Preparation of Co3O4@NiMn-LDH Heterostructured Arrays as Efficient Oxygen Evolution Electrocatalyst[J]. Chinese J. Inorg. Chem., 2020,36(10):1899-1905. doi: 10.11862/CJIC.2020.188 

    18. [18]

      Niu S, Jiang W J, Tang T, Yuan L P, Luo H, Hu J S. Autogenous Growth of Hierarchical NiFe(OH)x/FeS Nanosheet-On-Microsheet Arrays for Synergistically Enhanced High-Output Water Oxidation[J]. Adv. Funct. Mater., 2019,29(36)1902180. doi: 10.1002/adfm.201902180

    19. [19]

      Mi Y Y, Qiu Y, Liu Y F, Peng X Y, Hu M, Zhao S Z, Cao H Q, Zhuo L C, Li H Y, Ren J Q, Liu X J, Luo J. Cobalt-Iron Oxide Nanosheets for High-Efficiency Solar-Driven CO2-H2O Coupling Electrocatalytic Reactions[J]. Adv. Funct. Mater., 2020,30(31)2003438. doi: 10.1002/adfm.202003438

    20. [20]

      Xiong X L, You C, Liu Z A, Asiri A M, Sun X P. Co-Doped CuO Nanoarray: An Efficient Oxygen Evolution Reaction Electrocatalyst with Enhanced Activity[J]. ACS Sustainable Chem. Eng., 2018,6(3):2883-2887. doi: 10.1021/acssuschemeng.7b03752

    21. [21]

      Wang R, Wang Z, Xiang X J, Zhang R, Shi X F, Sun X P. MnO2 Nanoarrays: An Efficient Catalyst Electrode for Nitrite Electroreduction toward Sensing and NH3 Synthesis Applications[J]. Chem. Commun., 2018,54(73):10340-10342. doi: 10.1039/C8CC05837G

    22. [22]

      Xu W N, Liu G L, W C S, Hu C G, Xue W. A Novel β-MnO2 Micro/Nanorod Arrays Directly Grown on Flexible Carbon Fiber Fabric for High-Performance Enzymeless Glucose Sensing[J]. Electrochim. Acta, 2017,225:121-128. doi: 10.1016/j.electacta.2016.12.130

    23. [23]

      Jiang Y Q, Ba D L, Li Y Y, Liu J P. Noninterference Revealing of "Layered to Layered" Zinc Storage Mechanism of δ-MnO2 toward Neutral Zn-Mn Batteries with Superior Performance[J]. Adv. Sci., 2020,7(6)1902795. doi: 10.1002/advs.201902795

    24. [24]

      Fan Z, Chen J H, Zhang B, Liu B, Zhong X X, Kuang Y F. High Dispersion of γ-MnO2 on Well-Aligned Carbon Nanotube Arrays and Its Application in Supercapacitors[J]. Diamond Relat. Mater., 2008,17(11):1943-1948. doi: 10.1016/j.diamond.2008.04.015

    25. [25]

      XU B, YU L, YE W J, SUN M, CHENG G, LIAO S H. Study on Reparation and Electrochemical Properties of Manganese Dioxide with Different Morphologies[J]. Inorganic Chemicals Industry, 2017,49(10):42-45, 56.  

    26. [26]

      Bi R, Liu G X, Zeng C, Wang X P, Zhang L, Qiao S Z. 3D Hollow Alpha-MnO2 Framework as an Efficient Electrocatalyst for Lithium-Oxygen Batteries[J]. Small, 2019,15(10)1804958. doi: 10.1002/smll.201804958

    27. [27]

      Ji J, Lu X L, Chen C, He M, Huang H B. Potassium-Modulated δ-MnO2 as Robust Catalysts for Formaldehyde Oxidation at Room Temperature[J]. Appl. Catal. B, 2020,260118210. doi: 10.1016/j.apcatb.2019.118210

    28. [28]

      Zhao Y X, Chang C, Teng F, Zhao Y F, Chen G B, Shi R, Water-house G I N, Huang W F, Zhang T R. Defect-Engineered Ultrathin δ-MnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting[J]. Adv. Energy Mater., 2017,7(18)1700005. doi: 10.1002/aenm.201700005

    29. [29]

      ZHANG Y J, LIU L R, WU Y, ZHAO F, LIU G, LI J P. Two-Step Electrodeposition Construction of NiFe/Ni3S2/NF Hierarchical Heterogeneous Electrode for Enhanced Oxygen Evolution Reaction at Large Current Densities[J]. Chinese J. Inorg. Chem., 2021,37(3):499-508.  

    30. [30]

      Liu H X, Liu X J, Mao Z Y, Zhao Z, Peng X Y, Luo J, Sun X M. Plasma-Activated Co3(PO4)2 Nanosheet Arrays with Co3+-Rich Surfaces for Overall Water Splitting[J]. J. Power Sources, 2018,400:190-197. doi: 10.1016/j.jpowsour.2018.08.028

    31. [31]

      Portehault D, Cassaignon S, Nassif N, Baudrin E, Jolivet J P. A Core-Corona Hierarchical Manganese Oxide and Its Formation by an Aqueous Soft Chemistry Mechanism[J]. Angew. Chem. Int. Ed., 2008,47(34):6441-6444. doi: 10.1002/anie.200800331

    32. [32]

      Liu Y, Yan D, Zhuo R F, Li S K, Wu Z G, Wang J, Ren P Y, Yan P X, Geng Z R. Design, Hydrothermal Synthesis and Electrochemical Properties of Porous Birnessite-Type Manganese Dioxide Nanosheets on Graphene as a Hybrid Material for Supercapacitors[J]. J. Power Sources, 2013,242:78-85. doi: 10.1016/j.jpowsour.2013.05.062

    33. [33]

      Sinha A K, Pradhan M, Pal T. Morphological Evolution of Two-Dimensional MnO2 Nanosheets and Their Shape Transformation to One-Dimensional Ultralong MnO2 Nanowires for Robust Catalytic Activity[J]. J. Phys. Chem. C, 2013,117(45):23976-23986. doi: 10.1021/jp403527p

    34. [34]

      Xiao W, Wang D L, Lou X W. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction[J]. J. Phys. Chem. C, 2010,114:1694-1700. doi: 10.1021/jp909386d

    35. [35]

      Duan X C, Yang J Q, Gao H Y, Ma J M, Jiao L F, Zheng W J. Controllable Hydrothermal Synthesis of Manganese Dioxide Nanostructures: Shape Evolution, Growth Mechanism and Electrochemical Properties[J]. CrystEngComm, 2012,14(12):4196-4204. doi: 10.1039/c2ce06587h

    36. [36]

      Truong T T, Liu Y Z, Ren Y, Trahey L, Sun Y G. Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium-Air Batteries[J]. ACS Nano, 2021,6(9):8067-8077.

    37. [37]

      Cheng G, Yu L, Lan B, Sun M, Lin T, Fu Z W, Su X H, Qiu M Q, Guo C H, Xu B. Controlled Synthesis of α-MnO2 Nanowires and Their Catalytic Performance for Toluene Combustion[J]. Mater. Res. Bull., 2016,75:17-24. doi: 10.1016/j.materresbull.2015.11.017

    38. [38]

      Zhao Y F, Zhang J Q, Wu W J, Guo X, Xiong P, Liu H, Wang G X. Cobalt-Doped MnO2 Ultrathin Nanosheets with Abundant Oxygen Vacancies Supported on Functionalized Carbon Nanofibers for Efficient Oxygen Evolution[J]. Nano Energy, 2018,54:129-137. doi: 10.1016/j.nanoen.2018.10.008

    39. [39]

      Fang Y H, Liu Z P. Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles[J]. ACS Catal., 2014,4(12):4364-4376. doi: 10.1021/cs501312v

    40. [40]

      Sun S N, Sun Y M, Zhou Y, Shen J J, Mandler D, Neumann R, Xu Z J. Switch of the Rate-Determining Step of Water Oxidation by Spin-Selected Electron Transfer in Spinel Oxides[J]. Chem. Mater., 2019,31(19):8106-8111. doi: 10.1021/acs.chemmater.9b02737

    41. [41]

      Mckendry I G, Thenuwara A C, Shumlas S L, Peng H W, Aulin Y V, Chinnam P R, Borguet E, Strongin D R, Zdilla M J. Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis[J]. Inorg. Chem., 2018,57(2):557-564. doi: 10.1021/acs.inorgchem.7b01592

    42. [42]

      Zheng X Y, Yu L, Lan B, Cheng G, Lin T, He B B, Ye W J, Sun M, Ye F. Three-Dimensional Radial α-MnO2 Synthesized from Different Redox Potential for Bifunctional Oxygen Electrocatalytic Sctivities[J]. J. Power Sources, 2017,362:332-341. doi: 10.1016/j.jpowsour.2017.07.027

    43. [43]

      Fujimoto K, Ueda Y, Inohara D, Fujii Y, Nakayama M. Cobalt-Doped Electrolytic Manganese Dioxide as an Efficient Bifunctional Catalyst for Oxygen Evolution/Reduction Reactions[J]. Electrochim. Acta, 2020,354136592. doi: 10.1016/j.electacta.2020.136592

    44. [44]

      Mo Z, Xu H, Chen Z G, She X J, Song Y H, Lian J B, Zhu X W, Yan P C, Lei Y C, Yuan S Q, Li H M. Construction of MnO2/Monolayer g-C3N4 with Mn Vacancies for Z-Scheme Overall Water Splitting[J]. Appl. Catal. B, 2019,241:452-460. doi: 10.1016/j.apcatb.2018.08.073

    45. [45]

      Yan G B, Lian Y B, Gu Y D, Yang C, Sun H, Mu Q Q, Li Q, Zhu W, Zheng X S, Chen M Z, Zhu J F, Deng Z, Peng Y. Phase and Morphology Transformation of MnO2 Induced by Ionic Liquids toward Efficient Water Oxidation[J]. ACS Catal., 2018,8(11):10137-10147. doi: 10.1021/acscatal.8b02203

    46. [46]

      Frydendal R, Paoli E A, Chorkendorff I, Rossmeisl J, Stephens I E L. Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2[J]. Adv. Energy Mater., 2015,5(22)1500991. doi: 10.1002/aenm.201500991

    47. [47]

      Jia J B, Zhang P Y, Chen L. Catalytic Decomposition of Gaseous Ozone over Manganese Dioxides with Different Crystal Structures[J]. Appl. Catal. B, 2016,189:210-218. doi: 10.1016/j.apcatb.2016.02.055

    48. [48]

      CHEN L Y, CHENG G, LIU G L, HAN J X, FU S C, HAN S B, SUN M, LAN B, YU L. Structure-Activity Relationship of Three-Dimensional Urchin-like MnO2 Microspheres with Different Crystalline Phases for Oxygen Reduction Reaction[J]. Chinese J. Inorg. Chem., 2020,36(3):458-466.  

    49. [49]

      Sun M, Li W P, Zhang B T, Cheng G, Lan B, Ye F, Zheng Y Y, Cheng X L, Yu L. Enhanced Catalytic Performance by Oxygen Vacancy and Active Interface Originated from Facile Reduction of OMS-2[J]. Chem. Eng. J., 2018,331:626-635. doi: 10.1016/j.cej.2017.09.028

    50. [50]

      Cheng G, Xie S L, Lan B, Zheng X Y, Ye F, Sun M, Lu X H, Yu L. Phase Controllable Synthesis of Three-Dimensional Star-like MnO2 Hierarchical Architectures as Highly Efficient and Stable Oxygen Reduction Electrocatalysts[J]. J. Mater. Chem. A, 2016,4(42):16462-16468. doi: 10.1039/C6TA04530H

    51. [51]

      Gu Y D, Yan G B, Lian Y B, Qi P W, Mu Q Q, Zhang C F, Deng Z, Peng Y. Mn-Enriched α-MnO2 Nanowires as Efficient Bifunctional Oxygen Catalysts for Rechargeable Zn-Air Batteries[J]. Energy Storage Mater., 2019,23:252-260. doi: 10.1016/j.ensm.2019.05.006

    52. [52]

      Huynh M, Bediako D K, Nocera D G. A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid[J]. J. Am. Chem. Soc., 2014,136(16):6002-6010. doi: 10.1021/ja413147e

    53. [53]

      Takashima T, Hashimoto K, Nakamura R. Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions[J]. J. Am. Chem. Soc., 2012,134(44):18153-18156. doi: 10.1021/ja306499n

    54. [54]

      Chen B, Miao H, Yin M M, Hu R G, Xia L, Zhang C F, Yuan J L. Mn-Based Spinels Evolved from Layered Manganese Dioxides at Mild Temperature for the Robust Flexible Quasi-Solid-State Zinc-Air Batteries[J]. Chem. Eng. J., 2021,417129179. doi: 10.1016/j.cej.2021.129179

    55. [55]

      Liu X J, Xi W, Li C, Li X B, Shi J, Shen Y L, He J, Zhang L H, Xie L, Sun X M, Wang P, Luo J, Liu L M, Ding Y. Nanoporous Zn-Doped Co3O4 Sheets with Single-Unit-Cell-Wide Lateral Surfaces for Efficient Oxygen Evolution and Water Splitting[J]. Nano Energy, 2018,44:371-377. doi: 10.1016/j.nanoen.2017.12.016

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(35)
  • Abstract views(1663)
  • HTML views(553)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return