Citation: Shui-Sheng WU, Bing YI, Ran WANG, Dong-Hui LAN, Nian-Yuan TAN. Enhancing Photocatalytic Performance of Flower-like BiOBr for Degradation of Rhodamine B by ZnO Modification[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 211-219. doi: 10.11862/CJIC.2022.029 shu

Enhancing Photocatalytic Performance of Flower-like BiOBr for Degradation of Rhodamine B by ZnO Modification

  • Corresponding author: Bing YI, bingyi2004@126.com
  • Received Date: 19 March 2021
    Revised Date: 31 August 2021

Figures(9)

  • BiOBr/ZnO three-dimensional flower-like nanocomposite with enhanced photocatalytic ability were prepared by simple solvothermal method applying Bi(NO3)3·5H2O, Zn(CH3COO)2·2H2O and NaBr as precursors. The physical and chemical attributes were characterized by various analytical techniques such as X-ray diffraction, scanning electron microscope, X-ray photon spectroscopy, N2 adsorption-desorption, UV-Vis diffusion reflectance spectroscopy, photoluminescence and electron paramagnetic resonance (EPR). The main crystalline structure of BiOBr is not destroyed after doping, but growth of BiOBr crystals is lightly inhibited by doping ZnO. The trapping agent experiment and EPR spectra show that ·O2- and ·OH are the main active species in the process of photocatalytic degradation. The photocatalytic activities of the composite were evaluated by the degradation of rhodamine B (RhB) under visible light. The results showed that BiOBr/ZnO with 5% ZnO had the best photocatalytic activity, and the degradation rate of RhB reached 98.3% after 50 min of irradiation. Its degradation rate constant was 6.3 times and 3.4 times higher than those of pure ZnO and BiOBr, respectively. The introduction of ZnO enhances the absorption of visible light and the charge separation efficiency of photogenerated carriers.
  • 加载中
    1. [1]

      Lu Y L, Song S, Wang R S, Liu Z Y, Meng J, Sweetman A J, Jenkins A, Ferrier R C, Li H, Luo W. Impacts of Soil and Water Pollution on Food Safety and Health Risks in China[J]. Environ. Int., 2015,77:5-15. doi: 10.1016/j.envint.2014.12.010

    2. [2]

      Smith L E D, Siciliano G. A Comprehensive Review of Constraints to Improved Management of Fertilizers in China and Mitigation of Diffuse Water Pollution from Agriculture[J]. Agr. Ecosyst. Environ., 2015,209:15-25. doi: 10.1016/j.agee.2015.02.016

    3. [3]

      Xue X Y, Cheng R, Shi L, Ma Z, Zhang X. Nanomaterials for Water Pollution Monitoring and Remediation[J]. Environ. Chem. Lett., 2017,15(1):23-27. doi: 10.1007/s10311-016-0595-x

    4. [4]

      MAO J Y, HUANG Y W, HUANG Z Q, LIU X P, XUE H, XIAO L R. Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p-Block Metal Oxides Ga2O3 and Sb2O3[J]. Chinese J. Inorg. Chem., 2021,37(3):509-515.  

    5. [5]

      ZHU M F, LU Z Q, LIAO C X, CHEN A P, LI C Z. Application in Formaldehyde Purification in Air of Flower Spherical Bi2S3/BiOI Composite Photocatalyst[J]. Chinese J. Inorg. Chem., 2021,37(3):437-442.  

    6. [6]

      Wang W N, Huang C X, Zhang C Y, Zhao M L, Zhang J, Chen H J, Zha Z B, Zhao T T, Qian H S. Controlled Synthesis of Upconverting Nanoparticles/ZnxCd1-xS Yolk-Shell Nanoparticles for Efficient Photocatalysis Driven by NIR Light[J]. Appl. Catal. B, 2018,224:854-862. doi: 10.1016/j.apcatb.2017.11.037

    7. [7]

      Zhang C Y, Liu H H, Wang W N, Qian H S, Cheng S, Wang Y, Zha Z B, Zhong Y J, Hu Y. Scalable Fabrication of ZnxCd1-xS Double-Shell Hollow Nanospheres for Highly Efficient Hydrogen Production[J]. Appl. Catal. B, 2018,239:309-316. doi: 10.1016/j.apcatb.2018.08.027

    8. [8]

      Zhang C Y, Wang W N, Zhao M L, Zhang J, Zha Z B, Cheng S, Zheng H W, Qian H S. Construction of ZnxCd1-xS/Bi2S3 Composite Nanospheres with Photothermal Effect for Enhanced Photocatalytic Activities[J]. J. Colloid Interface Sci., 2019,546:303-311. doi: 10.1016/j.jcis.2019.03.077

    9. [9]

      WANG Z J, HONG J J, Ng S F, LIU W, HUANG J J, CHEN P F, Ong W J. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation[J]. Acta Phys.-Chim. Sin., 2021,37(6)2011033.  

    10. [10]

      Cho S, Kim S, Jang J W, Jung S H, Oh E, Lee B R, Lee K H. Large-Scale Fabrication of Sub-20-nm-Diameter ZnO Nanorod Arrays at Room Temperature and Their Photocatalytic Activity[J]. J. Phys. Chem. C, 2009,113(24):10452-10458. doi: 10.1021/jp9017597

    11. [11]

      Kansal S K, Singh M, Sud D. Studies on TiO2/ZnO Photocatalysed Degradation of Lignin[J]. J. Hazard. Mater., 2008,153(1/2):412-417.  

    12. [12]

      Guo X L, Duan J H, Li C J, Zhang Z S, Wang W W. Highly Efficient Z-Scheme g-C3N4/ZnO Photocatalysts Constructed by Co-melting-Recrystallizing Mixed Precursors for Wastewater Treatment[J]. J. Mater. Sci., 2020,55(5):1-14. doi: 10.1007/s10853-019-04097-0

    13. [13]

      Fu D Y, Han G Y, Chang Y Z, Dong J H. The Synthesis and Properties of ZnO-Graphene Nano Hybrid for Photodegradation of Organic Pollutant in Water[J]. Mater. Chem. Phys., 2012,132(2/3):673-681.  

    14. [14]

      Min Y L, Kan Z, Chen Y C, Zhang Y G, Zhao W. Synthesis of Nanostructured ZnO/Bi2WO6 Heterojunction for Photocatalysis Application[J]. Sep. Purif. Technol., 2012,92:115-120. doi: 10.1016/j.seppur.2012.03.012

    15. [15]

      Cheng H F, Huang B B, Dai Y. Engineering BiOX (X=Cl, Br, I) Nanostructures for Highly Efficient Photocatalytic Applications[J]. Nanoscale, 2014,6(4):2009-2026. doi: 10.1039/c3nr05529a

    16. [16]

      Zhang J H, Zhang L L, Lv J S, Zhou S Y, Chen H Q, Zhao Y J, Wang X. Exceptional Visible-Light-Induced Photocatalytic Activity of Attapulgite-BiOBr-TiO2 Nanocomposites[J]. Appl. Clay Sci., 2014,90:135-140. doi: 10.1016/j.clay.2013.12.037

    17. [17]

      LIU X L, SONG J M, DONG N, HU G, YANG J, SI W, LI W H. Synthesis and Adsorption Properties of Squamous BiOBr/Bi2WO6[J]. Acta Phys.-Chim. Sin., 2016,32(7):1844-1850.  

    18. [18]

      Ye L Q, Liu J Y, Jiang Z, Peng T Y, Zan L. Facets Coupling of BiOBr-g-C3N4 Composite Photocatalyst for Enhanced Visible-Light-Driven Photocatalytic Activity[J]. Appl. Catal. B, 2013,142-143:1-7. doi: 10.1016/j.apcatb.2013.04.058

    19. [19]

      Ai Z H, Ho W K, Lee S C. Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites[J]. J. Phys. Chem. C, 2011,115(51):25330-25337. doi: 10.1021/jp206808g

    20. [20]

      Bezverkhyy I, Skrzypski J, Safonova O, Bellat J P. Sulfidation Mechanism of Pure and Cu-Doped ZnO Nanoparticles at Moderate Temperature: TEM and In Situ XRD Studies[J]. J. Phys. Chem. C, 2012,116(27):14423-14430. doi: 10.1021/jp303181d

    21. [21]

      Ye L Q, Su Y R, Jin X L, Xie H Q, Gao F G, Guo Z. Which Affect the Photoreactivity of BiOBr Single-Crystalline Nanosheets with Different Hydrothermal pH Value: Size or Facet?[J]. Appl. Surf. Sci., 2014,311:858-863. doi: 10.1016/j.apsusc.2014.05.191

    22. [22]

      Cai Z S, Zhong J B, Li J Z, Jin H S. Oxygen Vacancies Enriched BiOBr with Boosted Photocatalytic Behaviors[J]. Inorg. Chem. Commun., 2021,126108450. doi: 10.1016/j.inoche.2021.108450

    23. [23]

      Mahana A, Mehta S K. Potential of Scenedesmus-Fabricated ZnO Nanorods in Photocatalytic Reduction of Methylene Blue under Direct Sunlight: Kinetics and Mechanism[J]. Environ. Sci. Pollut. Res., 2021,28(22):28234-28250. doi: 10.1007/s11356-021-12682-7

    24. [24]

      Wei X X, Cui H T, Guo S Q, Zhao L F, Li W. Hybrid BiOBr-TiO2 Nanocomposites with High Visible Light Photocatalytic Activity for Water Treatment[J]. J. Hazard. Mater., 2013,263(part 2):650-658.  

    25. [25]

      Foghahazade N, Behnejad H, Mousavi M, Hamzehloo M. Novel p-n-p Heterojunction Photocatalyst Synthesized by BiFeO3, ZnO, and BiOBr Nanoparticles: Facile Preparation and High Photocatalytic Activity Under Visible Light[J]. J. Mater. Sci.-Mater. Electron., 2020,31(22):19764-19777. doi: 10.1007/s10854-020-04501-5

    26. [26]

      Yang D R, Feng J, Jiang L L, Wu X L, Sheng L Z, Jiang Y T, Wei T, Fan Z J. Photocatalyst Interface Engineering: Spatially Confined Growth of ZnFe2O4 within Graphene Networks as Excellent Visible-Light-Driven Photocatalysts[J]. Adv. Funct. Mater., 2016,25(45):7080-7087.  

    27. [27]

      Hou Y P, Gan Y Y, Yu Z B, Chen X X, Qian L, Zhang B G, Huang L R, Huang J. Solar Promoted Azo Dye Degradation and Energy Production in the Bio-photoelectrochemical System with a g-C3N4/BiOBr Heterojunction Photocathode[J]. J. Power Sources, 2017,371:26-34. doi: 10.1016/j.jpowsour.2017.10.033

    28. [28]

      Hao L, Jian S, Ai Z H, Zhang , L Z. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets[J]. J. Am. Chem. Soc., 2015,137(19):6393-6399. doi: 10.1021/jacs.5b03105

    29. [29]

      Liu Z Q, Kuang P Y, Wei R B, Li N, Chen Y B, Su Y Z. BiOBr Nanoplate-Wrapped ZnO Nanorod Arrays for High Performance Photoelectrocatalytic Application[J]. RSC Adv., 2016,6(20):16122-16130. doi: 10.1039/C5RA27310B

    30. [30]

      Liu C, Wu Q S, Ji M W, Zhu H J, Hou H J, Yang Q H, Jiang C F, Wang J J, Tian L, Chen J, Hou W H. Constructing Z-Scheme Charge Separation in 2D Layered Porous BiOBr/Graphitic C3N4 Nanosheets Nanojunction with Enhanced Photocatalytic Activity[J]. J. Alloys Compd., 2017,723:1121-1131. doi: 10.1016/j.jallcom.2017.07.003

    31. [31]

      Wu T L, Liu L, Pi M Y, Zhang D K, Chen S J. Enhanced Magnetic and Photocatalytic Properties of Bi2Fe4O9 Semiconductor with Large Exposed (001) Surface[J]. Appl. Surf. Sci., 2016,377:253-261. doi: 10.1016/j.apsusc.2016.03.140

    32. [32]

      Fu H B, Xu T G, Zhu S B, Zhu Y F. Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C60[J]. Environ. Sci. Technol., 2008,42(21):8064-8069. doi: 10.1021/es801484x

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(11)
  • Abstract views(1033)
  • HTML views(329)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return