Citation: Qi ZHAO, Rui-Rui LIU, Jin-Jun ZHANG, Shuai XIE, Jing WANG, Yan-Xin CAO, Zhi-Jiang JI. Three-Dimensional Flower-like Bi2WO6/BioBr Heterojunction: Preparation and Degradation Properties for Various Dyes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 321-332. doi: 10.11862/CJIC.2022.028 shu

Three-Dimensional Flower-like Bi2WO6/BioBr Heterojunction: Preparation and Degradation Properties for Various Dyes

Figures(12)

  • A three-dimensional flower-like Bi2WO6/BiOBr heterojunction was successfully prepared by a hydrothermal approach using didodecyldimethylammonium bromide (DDAB) and cetyltrimethylammonium bromide (CTAB) as structure-directing agents and Br sources. The as-prepared photocatalysts were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-visible diffuse reflection spectroscopy, transient photocurrent, Nyquist plots, and electron paramagnetic resonance to investigate the structure, morphology, composition, and photoelectrochemical properties. The results showed that 20-30 nm BiOBr nanoparticles were uniformly attached to Bi2WO6 sheet to form a three-dimensional flower shape structure. Compared with pure Bi2WO6, Bi2WO6/BiOBr showed a wide visible response range and effective separation efficiency of photogenerated electrons and holes. The optimum photocatalytic performance of Bi2WO6/BiOBr when wDDAB/wCTAB=2.6 was verified by photodegradation experiments. Under the irradiation of a 300 W Xe lamp with 420 nm filter, it showed the highest reaction rate constant (0.099 7 min-1) in the degradation of rhodamine B, which was about 2.7 times and 1.9 times of Bi2WO6 (0.037 6 min-1) and BT-4 (0.052 3 min-1, wDDAB/wCTAB=3.9), respectively, and the activity was no significant decrease after 6 cycles. Bi2WO6/BiOBr heterojunction can also non-selectively degrade other types of organic dyes, such as methylene blue, malachite green, and methyl orange. Finally, the photodegradation mechanism of Bi2WO6/BiOBr heterojunctions was proposed by the active species capture experiment and Mulliken theoretical calculation of atomic electronegativity.
  • 加载中
    1. [1]

      Salari H, Yaghmaei H. Z-Scheme 3D Bi2WO6/MnO2 Heterojunction for Increased Photoinduced Charge Separation and Enhanced Photocatalytic Activity[J]. Appl. Surf. Sci., 2020,532147413. doi: 10.1016/j.apsusc.2020.147413

    2. [2]

      Di J, Xiong J, Li H M, Liu Z. Ultrathin 2D Photocatalysts: Electronicstructure Tailoring, Hybridization, and Applications[J]. Adv. Mater., 2018,30(1)1704548. doi: 10.1002/adma.201704548

    3. [3]

      Liu R R, Ji Z J, Xie S, Chen J H, Zhang J J, Cao Y X, Wang J. Fabrication of {001}-Facet Enriched Anatase TiO2/TiOF2 Heterostructures with Controllable Morphology for Enhanced Photocatalytic Activity[J]. Mater. Today Commun., 2021,6102060.

    4. [4]

      Zeng D B, Yu C L, Fan Q Z, Zeng J L, Wei L F, Li Z S, Yang K, Ji H B. Theoretical and Experimental Research of Novel Fluorine Doped Hierarchical Sn3O4 Microspheres with Excellent Photocatalytic Performance for Removal of Cr(Ⅵ) And Organic Pollutants[J]. Chem. Eng. J., 2020,391123607. doi: 10.1016/j.cej.2019.123607

    5. [5]

      Zeng D B, Yang K, Yu C L, Chen F Y, Li X X, Wu Z, Liu H. Phase Transformation and Microwave Hydrothermal Guided a Novel Double Z-Scheme Ternary Vanadate Heterojunction with Highly Efficient Photocatalytic Performance[J]. Appl. Catal. B, 2018,237:449-463. doi: 10.1016/j.apcatb.2018.06.010

    6. [6]

      Zhang R, Zeng K L. A Novel Flower-like Dual Z-Scheme BiSi/Bi2WO6/G-C3N4 Photocatalyst has Excellent Photocatalytic Activity for the Degradation of Organic Pollutants Under Visible Light[J]. Diamond Relat. Mater., 2021,115108343. doi: 10.1016/j.diamond.2021.108343

    7. [7]

      Li J Q, Guo Z Y, Zhu Z F. Ag/Bi2WO6 Plasmonic Composites with Enhanced Visible Photocatalytic Activity[J]. Ceram. Int., 2014,40(5):6495-6501. doi: 10.1016/j.ceramint.2013.11.102

    8. [8]

      Kang Z H, Qin N, Lin E Z, Wu J, Yuan B W, Bao D H. Effect of Bi2WO6 Nanosheets on the Ultrasonic Degradation of Organic Dyes: Roles of Adsorption and Piezocatalysis[J]. J. Cleaner Prod., 2020,261121125. doi: 10.1016/j.jclepro.2020.121125

    9. [9]

      Huang H W, Zhou C, Jiao X C, Yuan H F, Zhao J W, He C Q, Hofkens J, Roeffaers M B J, Long J L, Steele J A. Subsurface Defect Engineering in Single-Unit-Cell Bi2WO6 Monolayers Boosts Solar-Driven Photocatalytic Performance[J]. ACS Catal., 2020,10:1439-1443. doi: 10.1021/acscatal.9b04789

    10. [10]

      Di J, Chen C, Zhu C, Ji M X, Xia J X, Yan C, Hao W, Li S Z, Li H M, Liu Z. Bismuth Vacancy Mediated Single Unit Cell Bi2WO6 Nanosheets for Boosting Photocatalytic Oxygen Evolution[J]. Appl. Catal. B, 2018,238:119-125. doi: 10.1016/j.apcatb.2018.06.066

    11. [11]

      Dong M, Wu J, Gao M C, Xin Y J, Ma T J, Sun Y Y. Fabrication of Z-Scheme g-C3N4/RGO/Bi2WO6 Photocatalyst with Enhanced Visible-Light Photocatalytic Activity[J]. Chem. Eng. J., 2016,290:136-146. doi: 10.1016/j.cej.2016.01.031

    12. [12]

      Phu N D, Hoang L H, Hai P V, Huy T Q, Chen X B, Chou W C. Photocatalytic Activity Enhancement of Bi2WO6 Nanoparticles by Ag Doping and Ag Nanoparticles Modification[J]. J. Alloys Compd., 2020,824153914. doi: 10.1016/j.jallcom.2020.153914

    13. [13]

      Yu C L, He H B, Liu X Q, Zeng J L, Liu Z. Novel SiO2 Nanoparticle-Decorated BiOCl Nanosheets Exhibiting High Photocatalytic Performances for the Removal of Organic Pollutants[J]. Chin. J. Catal., 2019,40(8):1212-1221. doi: 10.1016/S1872-2067(19)63359-0

    14. [14]

      HE H B, ZHANG M F, LIU Z, FAN Q Z, YANG K, YU C L. Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets[J]. Chinese. J. Inorg. Chem., 2020,36(8):1413-1420.  

    15. [15]

      Guo X X, Wu D, Long X, Zhang Z H, Wang F L, Ai G H, Liu X H. Nanosheets-Assembled Bi2WO6 Microspheres with Efficient Visible-Light Driven Photocatalytic Activities[J]. Mater. Charact., 2020,163110297. doi: 10.1016/j.matchar.2020.110297

    16. [16]

      Shivani V, Harish S, Archana J, Navaneethan M, Ponnusamy S, Hayakaw Y. Highly efficient 3-D Hierarchical Bi2WO6 Catalyst for Environmental Remediation[J]. Appl. Surf. Sci., 2019,488:696-706. doi: 10.1016/j.apsusc.2019.05.072

    17. [17]

      Lv H, Liu Y M, Guang J, Ding Z W, Wang J J. Shape-Selective Synthesis of Bi2WO6 Hierarchical Structures and Their Morphology-Dependent Photocatalytic Activities[J]. RSC Adv., 2016,6:80226-80233. doi: 10.1039/C6RA14493D

    18. [18]

      Chen Q, Mao Y Q, Bing N C, Zou Y J, Zhu L P. Preparation and Optical Properties of Three-Dimensional Navel-like Bi2WO6 Hierarchical Microspheres[J]. Chin. Chem. Lett., 2019,30(3):783-786. doi: 10.1016/j.cclet.2018.10.036

    19. [19]

      Huang H W, Cao R R, Yu S X, Xu K, Hao W C, Wang Y G, Dong F, Zhang T R, Zhang Y H. Single-Unit-Cell Layer Established Bi2WO6 3D Hierarchical Architectures: Efficient Adsorption, Photocatalysis and Dye-Sensitized Photoelectrochemical Performance[J]. Appl. Catal. B, 2017,219:526-537. doi: 10.1016/j.apcatb.2017.07.084

    20. [20]

      Liu Y M, Ding Z W, Lv H, Guang J, Li S, Jiang J H. Hydrothermal Synthesis of Hierarchical Flower-like Bi2WO6 Microspheres with Enhanced Visible-Light Photoactivity[J]. Mater. Lett., 2015,157:158-162. doi: 10.1016/j.matlet.2015.05.024

    21. [21]

      Li C M, Chen G, Sun J X, Feng Y J, Dong H J, Han Z H, Hu Y D, Lv C D. A Thin Empty-Shell Bismuth Tungstate Hierarchical Structure Constructed by the Acid Sculpture Effect with Improved Visible-Light Photocatalytic Activity[J]. New J. Chem., 2015,39(6):4384-4390. doi: 10.1039/C4NJ01940G

    22. [22]

      Kavinkumar V, Jaihindh D P, Verm A, Jothivenkatachalam K, Fu Y P. Influence of Cobalt Substitution on the Crystal Structure, Band Edges and Photocatalytic Properties of Hierarchical Bi2WO6 Microspheres[J]. New J. Chem., 2019,43(23):9170-9182. doi: 10.1039/C9NJ00170K

    23. [23]

      Qin F Y, Cui P Z, Hu L, Wang Z M, Chen J, Xing X R, Wang H, Yu R B. Construction of Multi-shelled Bi2WO6 Hollow Microspheres with Enhanced Visible Light Photo-Catalytic Performance[J]. Mater. Res. Bull., 2018,99:331-335. doi: 10.1016/j.materresbull.2017.11.016

    24. [24]

      Wan J, Du X, Wang R M, Liu E, Jia J, Bai X, Hu X Y, Fan J. Meso-porous Nanoplate Multidirectional Assembled Bi2WO6 for High Efficient Photocatalytic Oxidation of NO[J]. Chemosphere, 2018,193:737-744. doi: 10.1016/j.chemosphere.2017.11.048

    25. [25]

      Chen M J, Huang Y, Lee S C. Salt-Assisted Synthesis of Hollow Bi2WO6 Microspheres with Superior Photocatalytic Activity for NO Removal[J]. Chin. J. Catal., 2017,38(2):348-356. doi: 10.1016/S1872-2067(16)62584-6

    26. [26]

      Hao H J, Lu D Z, Wang Q P. Photoelectrochemical Study on Charge Separation Mechanisms of Bi2WO6 Quantum Dots Decorated g-C3N4[J]. Int. J. Hydrogen Energy, 2018,43(18):8824-8834. doi: 10.1016/j.ijhydene.2018.03.192

    27. [27]

      Hu J S, An W J, Wang H, Geng J P, Cui W Q, Zhan Y. Synthesis of a Hierarchical BiOBr Nanodots/Bi2WO6 p-n Heterostructure with Enhanced Photoinduced Electric and Photocatalytic Degradation Performance[J]. RSC Adv., 2016,6(35):29554-29562. doi: 10.1039/C6RA00794E

    28. [28]

      Wang F J, Gu Y Y, Yang Z Y, Xie Y Y, Zhang J J, Shang X T, Zhao H B, Zhang Z Z, Wang X X. The Effect of Halogen on BiOX (X=Cl, Br, I)/Bi2WO6 Heterojunction for Visible-Light-Driven Photocatalytic Benzyl Alcohol Selective Oxidation[J]. Appl. Catal. A, 2018,567:65-72. doi: 10.1016/j.apcata.2018.09.010

    29. [29]

      Yu J C C, Nguyen V H, Lasek J, Wu J C S. Titania Nanosheet Photocatalysts with Dominantly Exposed (001) Reactive Facets for Photocatalytic NOx Abatement[J]. Appl. Catal. B, 2017,219:391-400. doi: 10.1016/j.apcatb.2017.07.077

    30. [30]

      Wang Q, Wang W, Zhong L L, Liu D M, Cao X Z, Cui F Y. Oxygen Vacancy-Rich 2D/2D BiOCl-g-C3N4 Ultrathin Heterostructure Nanosheets for Enhanced Visible-Light Driven Photocatalytic Activity in Environmental Remediation[J]. Appl. Catal. B, 2018,220:290-302. doi: 10.1016/j.apcatb.2017.08.049

    31. [31]

      He J Y, Liu Y L, Wang M, Wang Y W, Long F. Ionic Liquid-Hydrothermal Synthesis of Z-Scheme BiOBr/Bi2WO6 Heterojunction with Enhanced Photocatalytic Activity[J]. J. Alloys Compd., 2021,865:158760-158770. doi: 10.1016/j.jallcom.2021.158760

    32. [32]

      Wang S Y, Yang H, Yi Z, Wang X X. Enhanced Photocatalytic Performance by Hybridization of Bi2WO6 Nanoparticles with Honeycomb-like Porous Carbon Skeleton[J]. J. Environ. Manage., 2019,248109341. doi: 10.1016/j.jenvman.2019.109341

    33. [33]

      Meng X C, Zhang Z S. Facile Synthesis of BiOBr/Bi2WO6 Heterojunction Semiconductors with High Visible-Light-Driven Photocatalytic Activity[J]. J. Photochem. Photobiol. A, 2015,310:33-44. doi: 10.1016/j.jphotochem.2015.04.024

    34. [34]

      Dumrongrojthanath P, Phuruangrat A, Doungarno K, Thongtem T, Patiphatpanya P, Thongtem S. Microwave-Hydrothermal Synthesis of BiOBr/Bi2WO6 Nanocomposites for Enhanced Photocatalytic Performance[J]. Ceram. Int., 2018,44(1):S148-S151.

    35. [35]

      Tahmasebi N, Maleki Z, Farahnak P. Enhanced Photocatalytic Activities of Bi2WO6/BiOCl Composite Synthesized by One-Step Hydrothermal Method with the Assistance of HCl[J]. Mater. Sci. Semicond. Process., 2019,89:32-40. doi: 10.1016/j.mssp.2018.08.026

    36. [36]

      He J Y, Liu Y L, Wang M, Wang Y W, Long F. Ionic Liquid-Hydrothermal Synthesis of Z-Scheme BiOBr/Bi2WO6 Heterojunction with Enhanced Photocatalytic Activity[J]. J. Alloys Compd., 2021,865158760. doi: 10.1016/j.jallcom.2021.158760

    37. [37]

      Ren X Z, Wu K, Qin Z G, Zhao X C, Yang H. The Construction of Type Ⅱ Heterojunction of Bi2WO6/BiOBr Photocatalyst with Improved Photocatalytic Performance[J]. J. Alloys Compd., 2019,788:102-109. doi: 10.1016/j.jallcom.2019.02.211

    38. [38]

      Chankhanittha T, Somaudon V, Photiwat T, Hemavibool K, Nanan S. Preparation, Characterization, and Photocatalytic Study of Solvothermally Grown CTAB-Capped Bi2WO6 Photocatalyst toward Photodegradation of Rhodamine B Dye[J]. Opt. Mater., 2021,117111183. doi: 10.1016/j.optmat.2021.111183

    39. [39]

      Chiu Y H, Chang T F M, Chen C Y, Sone M, Hsu Y J. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts[J]. Catalysts, 2019,9(5)430. doi: 10.3390/catal9050430

    40. [40]

      Sharifian K, Mahdikhah V, Sheibani S. Ternary Ag@SrTiO3@CNT Plasmonic Nanocomposites for the Efficient Photodegradation of Organic Dyes under the Visible Light Irradiation[J]. Ceram. Int., 2021,47(16):22741-22752. doi: 10.1016/j.ceramint.2021.04.291

    41. [41]

      Abedini F, Allahyari S, Rahemi N. Oxidative Desulfurization of Dibenzothiophene and Simultaneous Adsorption of Products on BiOBr-C3N4/MCM-41 Visible-Light-Driven Core-Shell Nano Photocatalyst[J]. Appl. Surf. Sci., 2021,569151086. doi: 10.1016/j.apsusc.2021.151086

    42. [42]

      Yu P, Zhou X Q, Yan Y C, Li Z F, Zheng T L. Enhanced Visible-Light-Driven Photocatalytic Disinfection using AgBr-Modified g-C3N4 Composite and Its Mechanism[J]. Colloids Surf. B, 2019,179:170-179. doi: 10.1016/j.colsurfb.2019.03.074

    43. [43]

      Zhang Z J, Wang W Z, Wang L, Sun S M. Enhancement of Visible-Light Photocatalysis by Coupling with Narrow-Band-Gap Semiconductor: A Case Study on Bi2S3/Bi2WO6[J]. ACS Appl. Mater. Interfaces, 2012,4(2):593-597. doi: 10.1021/am2017199

    44. [44]

      Cheng H F, Huang B B, Wang P, Wang Z Y, Lou Z Z, Wang J P, Qin X Y, Zhang X Y, Ying D. In Situ Ion Exchange Synthesis of the Novel Ag/AgBr/BiOBr Hybrid with Highly Efficient Decontamination of Pollutants[J]. Chem. Commun., 2011,47(25):7054-7056. doi: 10.1039/c1cc11525a

    45. [45]

      Nethercot A H. Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts[J]. Phys. Rev. Lett., 1974,33(18):1088-1091. doi: 10.1103/PhysRevLett.33.1088

    46. [46]

      Hu J S, An W J, Wang H, Geng J P, Cui W Q, Zhan Y. Synthesis of a Hierarchical BiOBr Nanodots/Bi2WO6 p-n Heterostructure with Enhanced Photoinduced Electric and Photocatalytic Degradation Performance[J]. RSC Adv., 2016,6(35):29554-29562. doi: 10.1039/C6RA00794E

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    19. [19]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    20. [20]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

Metrics
  • PDF Downloads(2)
  • Abstract views(683)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return