Citation: Deng-Kui XIE, Ai-Ling FAN, Wei PANG, Ya-Qi GUO, Dian-Chao GAO. Flocculent Ternary Nickel-Cobalt-Iron Hydroxide Electrode Material: Preparation and Performance for Electrochemical Energy Storage[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 31-38. doi: 10.11862/CJIC.2022.024 shu

Flocculent Ternary Nickel-Cobalt-Iron Hydroxide Electrode Material: Preparation and Performance for Electrochemical Energy Storage

  • Corresponding author: Ai-Ling FAN, fanailing@bjut.edu.cn
  • Received Date: 14 May 2021
    Revised Date: 28 November 2021

Figures(6)

  • Three electrode materials of nickel - cobalt hydroxide, nickel - iron hydroxide, and nickel - cobalt - iron hydroxide were synthesized on nickel foam (NF) via a one - step solvothermal method. The electrochemical tests showed that the ternary nickel-cobalt-iron metal electrode with the best energy storage performance outperforms the other two binary metal electrodes, and it could reach an area capacitance of 5.11 F·cm-2 at a current density of 2 mA·cm-2. To further investigate the practical application, an asymmetric supercapacitor was assembled with NiCoFeOH/NF as the positive electrode and activated carbon as the negative electrode, respectively, and the device achieved a maximum energy density of 5.994 Wh·m-2 at a power density of 46.814 W·m-2. The results show that the excellent performance of NiCoFe - OH/NF can be attributed to loosen flocculent structure, which provides larger specific surface area per unit volume and subsequently store more electric charges, as well as facilitate electron/ion transportation, reduce the contact resistance between active material and electrolyte, and increase the electrical conductivity.
  • 加载中
    1. [1]

      Zhu Y W, Murali S, Stoller M D, Ganesh K j, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Carbon - Based Supercapacitors Produced by Activation of Graphene[J]. Science, 2011,332(6037):1537-1541. doi: 10.1126/science.1200770

    2. [2]

      Hoque M M, Hannan M A, Mohamed A, Ayob A. Battery Charge Equalization Controller in Electric Vehicle Applications: A Review[J]. Renewable Sustainable Energy Rev., 2017,75:1363-1385. doi: 10.1016/j.rser.2016.11.126

    3. [3]

      Li B, Gu P, Feng Y C, Zhang G X, Huang K S, Xue H G, Pang H. Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid - State Electrolyte[J]. Adv. Funct. Mater., 2017,27(12)1605784. doi: 10.1002/adfm.201605784

    4. [4]

      Wang F, Wang T, Sun S, Xu Y, Yu R, Li H. One-Step Synthesis of Nickle Iron - Layered Double Hydroxide/Reduced Graphene Oxide/Carbon Nanofibers Composite as Electrode Materials for Asymmetric Supercapacitor[J]. Sci. Rep., 2018,8(1)8908. doi: 10.1038/s41598-018-27171-0

    5. [5]

      KANG L P, ZHANG G N, BAI Y L, WANG H J, LEI Z B, LIU Z H. Two - Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application[J]. Acta Phys. - Chim. Sin., 2020,36(2)1905032.  

    6. [6]

      Elessawy N A, Nady E J, Wazeer W, Kashyout A B. Development of High - Performance Supercapacitor Based on a Novel Controllable Green Synthesis for 3D Nitrogen Doped Graphene[J]. Sci. Rep., 2019,9(1)1129. doi: 10.1038/s41598-018-37369-x

    7. [7]

      Liu D D, Xu B, Zhu J H, Tang S S, Xu F, Li S, Jia B Y, Chen G. Preparation of Highly Porous Graphitic Activated Carbon as Electrode Materials for Supercapacitors by Hydrothermal Pretreatment-Assisted Chemical Activation[J]. ACS Omega, 2020,5(19):11058-11067. doi: 10.1021/acsomega.0c00938

    8. [8]

      Liu Q F, Zang L M, Qiao X, Qiu J H, Wang X, Hu L, Yang J, Yang C. Compressible All - In - One Supercapacitor with Adjustable Output Voltage Based on Polypyrrole-Coated Melamine Foam[J]. Adv. Electron. Mater., 2019,5(12)1900724. doi: 10.1002/aelm.201900724

    9. [9]

      Chu J, Li X, Li Q Q, Ma J, Wu B H, Wang X Q, Zhang R L, Gong M, Xiong S X. Hydrothermal Synthesis of PANI Nanowires for High-Performance Supercapacitor[J]. High Perform. Polym., 2020,32(3):258-267. doi: 10.1177/0954008319856664

    10. [10]

      Liu S D, Lee S C, Patil U, Shackery I, Kang S, Zhang K, Park J H, Chung K Y, Jun S C. Hierarchical MnCo - Layered Double Hydroxides@Ni(OH)2 Core-Shell Heterostructures as Advanced Electrodes for Supercapacitors[J]. J. Mater. Chem. A, 2017,5:1043-1049. doi: 10.1039/C6TA07842G

    11. [11]

      Parveen N, Ansari S A, Alamri H R, Ansari M O, Khan Z, Cho M H. Facile Synthesis of SnS2 Nanostructures with Different Morphologies for High - Performance Supercapacitor Applications[J]. ACS Omega, 2018,3(2):1581-1588. doi: 10.1021/acsomega.7b01939

    12. [12]

      Fan Y Q, Wang L M, Ma Z P, Dai W, Shao H B, Wang H J, Shao G J. The In Situ Synthesis of Fe(OH)3 Film on Fe Foam as Efficient Anode of Alkaline Supercapacitor Based on a Promising Fe3+/Fe0 Energy Storage Mechanism[J]. Particle, 2018,35(6)1700484.  

    13. [13]

      Yang C Y, Li X Y, Yu L, Liu X J, Yang J, Wei M D. A New Promising Ni-MOF Superstructure for High-Performance Supercapacitors[J]. Chem. Commun., 2020,56(12):1803-1806. doi: 10.1039/C9CC09302H

    14. [14]

      Ranganatha S, Munichandraiaha N. Solvothermal Synthesis of Mesoporous NiCoP for High Performance Electrochemical Supercapacitors[J]. Mater. Chem. Phys., 2019,224(15):124-128.  

    15. [15]

      Zhao C, Zhang C Y, Bhoyate S, Kahol P K, Kostoglou N, Mitterer C, Hinder S, Baker M, Constantinides G, Polychonopoulou K. Nanostructured Fe-Ni Sulfide: A Multifunctional Material for Energy Generation and Storage[J]. Catalysts, 2019,9(7)597. doi: 10.3390/catal9070597

    16. [16]

      Wan H Z, Li L, Xu Y, Tan Q Y, Liu X, Zhang J, Wang H B, Wang H. 3D Cotton-like Nickel Nanowires@Ni-Co Hydroxide Nanosheets Arrays as Binder-Free Electrode for High-Performance Asymmetric Supercapacitor[J]. Nanotechnology, 2018,29194003. doi: 10.1088/1361-6528/aab129

    17. [17]

      Kong M L, Wang Z, Wang W Y, Ma M, Liu D N, Hao S, Kong R M, Du G, Asiri A M, Yao Y D, Sun X P. NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance[J]. Chem. Eur. J., 2017,23(18):4435-4441. doi: 10.1002/chem.201700017

    18. [18]

      Li W Y, Zhang B J, Lin R J, Ho-Kimura S, He G J, Zhou X Y, Hu J Q, Parkin I P. A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes[J]. Adv. Funct. Mater., 2018,28(23)1705937. doi: 10.1002/adfm.201705937

    19. [19]

      Liang C W, Zou P C, Nairan A, Zhang Y Q, Liu J X, Liu K W, Hu S Y, Kang F Y, Fan H J, Yang C. Exceptional Performance of Hierarchical Ni-Fe Oxyhydroxide@NiFe Alloy Nanowire Array-Electrocatalysts for Large Current Density Water Splitting[J]. Energy Environ. Sci., 2020,13:86-95. doi: 10.1039/C9EE02388G

    20. [20]

      Adekunle A S, Ozoemena K I, Agboola B O. MWCNTs/Metal (Ni, Co, Fe) Oxide Nanocomposite as Potential Material for Supercapacitors Application in Acidic and Neutral Media[J]. J. Solid State Electrochem., 2013,17(5):1311-1320. doi: 10.1007/s10008-012-1978-y

    21. [21]

      Tian L, Wo H X, Wang K, Wang X, Zhuang W C, Li T X, Du X H. Ultrathin Wrinkled NiFeP Nanosheets Enable Efficient Oxygen Evolution Electrocatalysis[J]. J. Chem. Eng., 2019,97:200-206.  

    22. [22]

      Yan M L, Yao Y D, Wen J Q, Long L, Kong M L, Zhang G G, Liao X M, Yin G F, Huang Z B. Construction of a Hierarchical NiCo2S4@PPy Core - Shell Heterostructure Nanotube Array on Ni Foam for a High - Performance Asymmetric Supercapacitor[J]. ACS Appl. Mater. Interfaces, 2016,8(37):24525-24535. doi: 10.1021/acsami.6b05618

    23. [23]

      Li M, Zhou M, Wen Z Q, Zhang Y X. Flower-like NiFe Layered Double Hydroxides Coated MnO2 for High-Performance Flexible Supercapacitors[J]. J. Energy Storage, 2017,11:242-248. doi: 10.1016/j.est.2017.03.010

    24. [24]

      Sekhar S C, Nagaraju G L, Yu J S. Conductive Silver Nanowires-Fenced Carbon Cloth Fibers - Supported Layered Double Hydroxide Nanosheets as A Flexible and Binder-Free Electrode for High-Performance Asymmetric Supercapacitors[J]. Nano Energy, 2017,26:58-67.  

    25. [25]

      Liu B, Kong D A, Huang Z X, Mo R W, Wang Y, Han Z J, Cheng C W, Yang H Y. Three - Dimensional Hierarchical NiCo2O4 Nanowire@ Ni3S2 Nanosheet Core/Shell Arrays for Flexible Asymmetric Supercapacitors[J]. Nanoscale, 2016,8:10686-10694. doi: 10.1039/C6NR02600A

    26. [26]

      Xiao T, Wang S L, Li J, Yang N, Li W, Xiang P, Jiang L H, Tan X Y. Sulfidation of NiFe - Layered Double Hydroxides as Novel Negative electrodes for Supercapacitors with Enhanced Performance[J]. J. Alloys Compd., 2018,786:635-643.  

    27. [27]

      Yu L, Zhang G Q, Yuan C Z, Lou X W. Hierarchical NiCo2O4@MnO2 Core-Shell Heterostructured Nanowire Arrays on Ni Foam as High-Performance Supercapacitor Electrodes[J]. Chem. Commun., 2013,49:137-139. doi: 10.1039/C2CC37117K

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(11)
  • Abstract views(933)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return