Citation: A-Min TAN, Yang HE, Bu-Lei LIU, Zheng-Chao YANG, Min TIAN, Gai ZHANG. Electrocatalysis Performance of Reduced Graphene Oxide Wrapped Ball-Type Metallophthalocyanine for Oxygen Reduction Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 21-30. doi: 10.11862/CJIC.2022.023 shu

Electrocatalysis Performance of Reduced Graphene Oxide Wrapped Ball-Type Metallophthalocyanine for Oxygen Reduction Reaction

  • Corresponding author: Gai ZHANG, gaizhang930@126.com
  • Received Date: 11 May 2021
    Revised Date: 23 November 2021

Figures(8)

  • There are some key problems for oxygen reduction reaction (ORR), such as the slow kinetic process and high cost of Pt/C catalysts. To overcome this problem, the ball - type metallophthalocyanines containing aldehyde substituents M2Pc2(TA)4 (M=Zn, Co, Fe) were synthesized. The metallophthalocyanine was then supported on the reduced graphene oxide (rGO) surface to obtain a composite catalyst M2Pc2(TA)4/rGO using the"π-π assembly" technology, and the morphology and microstructure were characterized. The results showed that the metallophthalocyanine was loaded on the surface of rGO through the"π-π stacking"effect, and the agglomeration phenomenon of the metallophthalocyanines was prevented. Cyclic voltammetry and linear sweep voltammetry were used to evaluate the catalytic activity of composites for ORR. The results suggested that rGO promotes the transfer of electrons in ORR and effectively enhances the electrocatalytic activity, based on the synergistic effect between rGO and balltype metallophthalocyanine. The catalytic mechanism reveals that the ORR is a four-electron electrocatalytic process. The catalytic activity is related to the d electron of the central metal. The electrocatalytic activity test was displayed in the order of Fe2Pc2(TA)4/rGO>Zn2Pc2(TA)4/rGO>Co2Pc2(TA)4/rGO.
  • 加载中
    1. [1]

      Xie J F, Ma G F, Ouyang X P, Zhao L S, Qiu X Q. Metalloporphyrin as a Biomimetic Catalyst for the Catalytic Oxidative Degradation of Lignin to Produce Aromatic Monomers[J]. Waste Biomass Valorization, 2020,11(8):4481-4489. doi: 10.1007/s12649-019-00753-3

    2. [2]

      Roudbari M N, Ojani R, Raoof J B. Nitrogen Functionalized Carbon Nanotubes as a Support of Platinum Electrocatalysts for Performance Improvement of ORR Using Fuel Cell Cathodic Half-Cell[J]. Renewable Energy, 2020,159:1015-1028. doi: 10.1016/j.renene.2020.06.028

    3. [3]

      Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Earth-Abundant Nanomaterials for Oxygen Reduction[J]. Angew. Chem. Int. Ed., 2016,55(8):2650-2676. doi: 10.1002/anie.201504830

    4. [4]

      Jiang Y Y, Lu Y Z, Lv X Y, Han D X, Zhang Q X, Niu L, Chen W. Enhanced Catalytic Performance of Pt - Free Iron Phthalocyanine by Graphene Support for Efficient Oxygen Reduction Reaction[J]. ACS Catal., 2013,3(6):1263-1271. doi: 10.1021/cs4001927

    5. [5]

      Li R N, Zhang D T, Zhou Y Y, Wang X Y, Guo G S. Synthesis and Characterization of a Novel Binuclear Iron Phthalocyanine/Reduced Graphene Oxide Nanocomposite for Non-Precious Electrocatalyst for Oxygen Reduction[J]. Sci. China Chem., 2016,59:746-751.

    6. [6]

      Wang X J, Shi Y C, Zhuang S G, Liang Z X, Li B T. Enhancement of Electricity Generation in Single Chamber Microbial Fuel Cell Using Binuclear-Cobalt-Phthalocyanine and Cerium Oxide Co-supported on Ordered Mesoporous Carbon as Cathode Catalyst[J]. J. Electrochem. Soc., 2019,166(2):F9-F17. doi: 10.1149/2.0061902jes

    7. [7]

      Zhu B Q, Zhang X J, Han M L, Deng P F, Li Q L. Novel Planar Binuclear Zinc Phthalocyanine Sensitizer for Dye - Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties[J]. J. Mol. Struct., 2015,1079:61-66. doi: 10.1016/j.molstruc.2014.09.037

    8. [8]

      Aykanat A, Meng Z, Benedetto G, Mirica K A. Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials[J]. Chem. Mater., 2020,32(13):5372-5409. doi: 10.1021/acs.chemmater.9b05289

    9. [9]

      Güzel E, Güney S, Kandaz M. One Pot Reaction and Three Type Products; 1(4), 8(11)-15(18), 22(25) Adjacent Azine Attached as Macrocyclically Mono, Bunk-Type (Dimer) and Polymeric Metallo Phthalocyanines; Synthesis, Spectroscopy, and Electrochemistry[J]. Dyes Pigm., 2015,113:416-425. doi: 10.1016/j.dyepig.2014.08.019

    10. [10]

      Hyun K, Ueno T, Panomsuwan G, Li O L, Saito N. Heterocarbon Nanosheets Incorporating Iron Phthalocyanine for Oxygen Reduction Reaction in Both Alkaline and Acidic Media[J]. Phys. Chem. Chem. Phys., 2016,18(16):10856-10863. doi: 10.1039/C5CP07739G

    11. [11]

      Nyokong T. Functional Phthalocyanine Molecular Materials: Vol. 135. Berlin, Heidelberg: Springer - Verlag Berlin Heidelberg, 2010: 45-88

    12. [12]

      Özen Ü E, Doğan E, Özer M, Bekaroğlu Ö, Özkaya A R. Communication-High-Performance and Non-Precious Bifunctional Oxygen Electrocatalysis with Binuclear Ball - Type Phthalocyanine Based Complexes for Zinc - Air Batteries[J]. J. Electrochem. Soc., 2016,163(9):A2001-A2003. doi: 10.1149/2.0941609jes

    13. [13]

      Koçyiğit N, Özen Ü E, Özer M, Salih B, Özkaya A R. Electrocatalytic Activity of Novel Ball-Type Metallophthalocyanines with Trifluoro Methyl Linkages in Oxygen Reduction Reaction and Application as Zn-Air Battery Cathode Catalyst[J]. Electrochim. Acta, 2017,233:237-248. doi: 10.1016/j.electacta.2017.03.035

    14. [14]

      Zhao Y M, Yu G Q, Wang F F, Wei P J, Liu J G. Bioinspired Transition-Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction[J]. Chem. Eur. J., 2019,25(15):3726-3739. doi: 10.1002/chem.201803764

    15. [15]

      Zhang G, Liu B L, Zhang Y F, Li T T, Chen W X, Zhao W F. Study on the Effects of a π Electron Conjugated Structure in Binuclear Metallophthalocyanines Graphene - Based Oxygen Reduction Reaction Catalysts[J]. Nanomaterials, 2020,10(5)946. doi: 10.3390/nano10050946

    16. [16]

      Kumar A, Zhang Y, Liu W, Sun X M. The Chemistry, Recent Advancements and Activity Descriptors for Macrocycles Based Electrocatalysts in Oxygen Reduction Reaction[J]. Coord. Chem. Rev., 2020,402213047. doi: 10.1016/j.ccr.2019.213047

    17. [17]

      Nwaji N, Achadu O J, Nyokong T. Photo-Induced Resonance Energy Transfer and Nonlinear Optical Response in Ball-Type Phthalocyanine Conjugated to Semiconductor and Graphene Quantum Dots[J]. New J. Chem., 2018,42(8):6040-6050. doi: 10.1039/C7NJ05196D

    18. [18]

      Shao Q, Li Y, Cui X, Li T J, Wang H G, Li Y H, Duan Q, Si Z J. Metallophthalocyanine - Based Polymer - Derived Co2P Nanoparticles Anchoring on Doped Graphene as High-Efficient Trifunctional Electrocatalyst for Zn-Air Batteries and Water Splitting[J]. ACS Sustainable Chem. Eng., 2020,8(16):6422-643. doi: 10.1021/acssuschemeng.0c00852

    19. [19]

      Liu Z J, Jiang Q Q, Zhang R L, Gao R M, Zhao J S. Graphene/Phthalocyanine Composites and Binuclear Metal Phthalocyanines with Excellent Electrocatalytic Performance to Li/SOCl2 Battery[J]. Electrochim. Acta, 2015,187:81-91.  

    20. [20]

      Han N, Wang Y, Ma L, Wen J G, Li J, Zheng H C, Nie K Q, Wang X X, Zhao F P, Li Y F, Fan J, Zhong J, Wu T P, Miller D J, Lu J, Lee S T, Li Y G. Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction[J]. Chem, 2017,3(4):652-664. doi: 10.1016/j.chempr.2017.08.002

    21. [21]

      Gao X P, Zhou Y N, Liu S Q, Cheng Z W, Tan Y J, Shen Z M. Single Cobalt Atom Anchored on N-Doped Graphyne for Boosting the Overall Water Splitting[J]. Appl. Surf. Sci., 2020,502144155. doi: 10.1016/j.apsusc.2019.144155

    22. [22]

      Mahyari M, Hooshmand S E, Sepahvand H, Gavgani J N, Hosseini S G. Biomimetic Complexes-Graphene Composites for Redox Processes[J]. Appl. Organomet. Chem., 2020,34(4)E5540.

    23. [23]

      Kottakkat T, Bron M. One - Pot Synthesis of Cobalt - Incorporated Nitrogen-Doped Reduced Graphene Oxide as an Oxygen Reduction Reaction Catalyst in Alkaline Medium[J]. ChemElectroChem, 2014,1(12):2163-2171. doi: 10.1002/celc.201402231

    24. [24]

      Odabaş Z, Altındal A, Özkaya A R, Salih B, Bekaroğlu Ö. Novel Ball -Type Homo- and Hetero-Dinuclear Phthalocyanines with Four 1, 1'Methylenedinaphthalen - 2 - ol Bridges: Synthesis and Characterization, Electrical and Gas Sensing Properties and Electrocatalytic Performance towards Oxygen Reduction[J]. Sens. Actuators B, 2009,145(1):355-366.

    25. [25]

      Ceyhan T, Altındal A, Özkaya A R, Salih B, Bekaroğlu Ö. Synthesis, Characterization, and Electrocatalytic and Electrical Properties of Novel Ball - Type Four Cyclopentyldisilanoxy - POSS Bridged Metallophthalocyanines[J]. Dalton Trans., 2009(46):10318-10329. doi: 10.1039/b913185j

    26. [26]

      Tyagi A, Penke Y K, Sinha P, Malik I, Kar K, Ramkumar J, Yokoi H. ORR Performance Evaluation of Al - Substituted MnFe2O4/Reduced Graphene Oxide Nanocomposite[J]. Int. J. Hydrogen Energy International, 2021,46(43):22434-22445. doi: 10.1016/j.ijhydene.2021.04.074

    27. [27]

      Shi C J, Maimaitiyiming X. Feni-Functionalized 3D N, P Doped Graphene Foam as a Noble Metal-Free Bifunctional Electrocatalyst for Direct Methanol Fuel Cells[J]. J. Alloys Compd., 2021,867158732. doi: 10.1016/j.jallcom.2021.158732

    28. [28]

      Dubin S, Gilje S, Wang S, Tung V C, Cha K, Hall A S, Farrar J, Varshneya R, Yang Y, Kaner R B. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents[J]. ACS Nano, 2010,4(7):3845-3852. doi: 10.1021/nn100511a

    29. [29]

      Kumara A, Yasin G, Vashistha V K, Das D K, Rehman M U, Iqbal R, Mo Z S, Nguyen T A, Slimani Y, Nazir M T, Zhao W. Enhancing Oxygen Reduction Reaction Performance via CNTs/Graphene Supported Iron Protoporphyrin Ⅸ: A Hybrid Nanoarchitecture Electrocatalyst[J]. Diamond Relat. Mater., 2021,113108272. doi: 10.1016/j.diamond.2021.108272

    30. [30]

      Li T F, Peng Y X, Li K, Zhang R, Zheng L R, Xia D G, Zuo X. Enhanced Activity and Stability of Binuclear Iron(Ⅲ) Phthalocyanine on Graphene Nanosheets for Electrocatalytic Oxygen Reduction in Acid[J]. J. Power Sources, 2015,293:511-518. doi: 10.1016/j.jpowsour.2015.05.099

    31. [31]

      Oyarzún M P, Silva N, Cortés-Arriagada D, Silva J F, Ponce I O, Flores M, Tammeveski K, Bélanger D, Zitolo A, Jaouen F, Zagal J H. Enhancing the Electrocatalytic Activity of Fe Phthalocyanines for the Oxygen Reduction Reaction by the Presence of Axial Ligands: Pyridine-Functionalized Single-Walled Carbon Nanotubes[J]. Electrochim. Acta, 2021,398139263. doi: 10.1016/j.electacta.2021.139263

    32. [32]

      Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen R A, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction[J]. Angew. Chem. Int. Ed., 2017,56(24):6937-6941. doi: 10.1002/anie.201702473

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(4)
  • Abstract views(943)
  • HTML views(211)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return